Zhitian Huang, Qianyu Huang, Hong Wei, Jinzhe Chen, Jiayi Wang, Gonghua Song
{"title":"Fluopyram analogues containing an indole moiety: synthesis, biological activity and molecular docking study.","authors":"Zhitian Huang, Qianyu Huang, Hong Wei, Jinzhe Chen, Jiayi Wang, Gonghua Song","doi":"10.1007/s11030-025-11106-9","DOIUrl":null,"url":null,"abstract":"<p><p>Succinate dehydrogenase (SDH) has been identified as one of the ideal targets for the development of novel nematicides. However, the resistance of nematodes to fluopyram, one of the commercialized SDH inhibitors, is becoming a growing concern. Since expanding the structural diversity around an active scaffold is a useful strategy for drug development, herein a series of fluopyram analogues with a broad, biologically relevant indole moiety were synthesized and evaluated for nematicidal activity against C. elegans. Fifty-six novel target compounds were synthesized and characterized by <sup>1</sup>H NMR, <sup>13</sup>C NMR, and HRMS. The bioscreen results revealed that a few compounds such as C16 and D21 with LC<sub>50/72 h</sub> values of 8.65 mg/L and 6.83 mg/L, respectively, showed compatible activity to that of the commercial nematicide tioxazafen (LC<sub>50/72 h</sub> = 5.98 mg/L). Molecular docking indicated that these compounds could effectively bind to the active site of SDH by forming hydrogen bonds with Trp215 and Tyr96, and causing a cation-π interaction with Arg74. The work suggests that indole-containing derivatives may represent a promising template for the development of new nematicides.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11106-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Succinate dehydrogenase (SDH) has been identified as one of the ideal targets for the development of novel nematicides. However, the resistance of nematodes to fluopyram, one of the commercialized SDH inhibitors, is becoming a growing concern. Since expanding the structural diversity around an active scaffold is a useful strategy for drug development, herein a series of fluopyram analogues with a broad, biologically relevant indole moiety were synthesized and evaluated for nematicidal activity against C. elegans. Fifty-six novel target compounds were synthesized and characterized by 1H NMR, 13C NMR, and HRMS. The bioscreen results revealed that a few compounds such as C16 and D21 with LC50/72 h values of 8.65 mg/L and 6.83 mg/L, respectively, showed compatible activity to that of the commercial nematicide tioxazafen (LC50/72 h = 5.98 mg/L). Molecular docking indicated that these compounds could effectively bind to the active site of SDH by forming hydrogen bonds with Trp215 and Tyr96, and causing a cation-π interaction with Arg74. The work suggests that indole-containing derivatives may represent a promising template for the development of new nematicides.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;