A Novel Ensemble Approach for Rib Fracture Detection and Visualization using CNNs and Grad-CAM.

IF 0.9 4区 医学 Q3 SURGERY Annali italiani di chirurgia Pub Date : 2025-01-01 DOI:10.62713/aic.3666
Ling Wu, Hongyu Chen, Puxu Li, Kai Yang
{"title":"A Novel Ensemble Approach for Rib Fracture Detection and Visualization using CNNs and Grad-CAM.","authors":"Ling Wu, Hongyu Chen, Puxu Li, Kai Yang","doi":"10.62713/aic.3666","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>This study aimed to develop a reliable and efficient system for predicting and locating rib fractures in medical images using an ensemble of convolutional neural networks (CNNs).</p><p><strong>Methods: </strong>We employed five CNN architectures-Visual Geometry Group Network 16 (VGG16), Densely Connected Convolutional Network 169 (DenseNet169), Inception Version 4 (Inception V4), Efficient Network B7 (EfficientNet-B7), and Residual Network Next 50 layers (ResNeXt-50)-trained on a dataset of 840 grayscale computed tomography (CT) scan images in .jpg format collected from 42 patients at a local hospital. The images were categorized into two groups representing healed and fresh fractures. The ensemble model was designed to improve predictive accuracy and robustness, utilizing techniques like gradient-weighted class activation mapping (Grad-CAM) for visualization of fracture locations.</p><p><strong>Results: </strong>The ensemble model achieved an accuracy of 0.96, area under the curve (AUC) of 0.97, recall of 0.97, and F1 score of 0.96. Grad-CAM visualizations could effectively locate rib fractures, providing crucial assistance in diagnostics.</p><p><strong>Conclusions: </strong>The ensemble model demonstrates high accuracy and robustness in fracture detection, underscoring its potential for enhancing diagnostic processes in clinical settings. Despite limitations such as the small dataset size and lack of diverse demographic representation, the results are promising for future clinical application.</p>","PeriodicalId":8210,"journal":{"name":"Annali italiani di chirurgia","volume":"96 1","pages":"86-97"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali italiani di chirurgia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62713/aic.3666","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: This study aimed to develop a reliable and efficient system for predicting and locating rib fractures in medical images using an ensemble of convolutional neural networks (CNNs).

Methods: We employed five CNN architectures-Visual Geometry Group Network 16 (VGG16), Densely Connected Convolutional Network 169 (DenseNet169), Inception Version 4 (Inception V4), Efficient Network B7 (EfficientNet-B7), and Residual Network Next 50 layers (ResNeXt-50)-trained on a dataset of 840 grayscale computed tomography (CT) scan images in .jpg format collected from 42 patients at a local hospital. The images were categorized into two groups representing healed and fresh fractures. The ensemble model was designed to improve predictive accuracy and robustness, utilizing techniques like gradient-weighted class activation mapping (Grad-CAM) for visualization of fracture locations.

Results: The ensemble model achieved an accuracy of 0.96, area under the curve (AUC) of 0.97, recall of 0.97, and F1 score of 0.96. Grad-CAM visualizations could effectively locate rib fractures, providing crucial assistance in diagnostics.

Conclusions: The ensemble model demonstrates high accuracy and robustness in fracture detection, underscoring its potential for enhancing diagnostic processes in clinical settings. Despite limitations such as the small dataset size and lack of diverse demographic representation, the results are promising for future clinical application.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于cnn和Grad-CAM的肋骨骨折检测与可视化集成方法。
目的:本研究旨在利用卷积神经网络(cnn)集合开发一种可靠、高效的系统来预测和定位医学图像中的肋骨骨折。方法:我们使用了5种CNN架构——视觉几何组网络16 (VGG16)、密集连接卷积网络169 (DenseNet169)、Inception V4 (Inception V4)、高效网络B7 (EfficientNet-B7)和剩余网络下50层(ResNeXt-50)——对来自当地医院42名患者的840张灰度计算机断层扫描(CT) .jpg格式图像进行训练。这些图像被分为两组,分别代表愈合骨折和新鲜骨折。集成模型旨在提高预测精度和鲁棒性,利用梯度加权类激活映射(Grad-CAM)等技术来可视化裂缝位置。结果:集合模型的准确率为0.96,曲线下面积(AUC)为0.97,召回率为0.97,F1评分为0.96。Grad-CAM可视化可以有效定位肋骨骨折,为诊断提供重要帮助。结论:该集成模型在骨折检测中具有较高的准确性和鲁棒性,强调了其在临床环境中增强诊断过程的潜力。尽管数据集规模小,缺乏多样化的人口统计学代表性等局限性,但结果对未来的临床应用很有希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.90
自引率
12.50%
发文量
116
审稿时长
>12 weeks
期刊介绍: Annali Italiani di Chirurgia is a bimonthly journal and covers all aspects of surgery:elective, emergency and experimental surgery, as well as problems involving technology, teaching, organization and forensic medicine. The articles are published in Italian or English, though English is preferred because it facilitates the international diffusion of the journal (v.Guidelines for Authors and Norme per gli Autori). The articles published are divided into three main sections:editorials, original articles, and case reports and innovations.
期刊最新文献
Application of Different Surgical Strategies in Helicobacter pylori-Associated Gastric Ulcers with Perforation: A Comparative Study of Short-Term and Long-Term Outcomes and Complication Risks. Conservative Management of Gastric Twist and Leak Post Band Removal and Sleeve Gastrectomy. Effect of Fast-Track Surgery Based on Nutritional Support in the Rehabilitation of Patients Undergoing Radical Thyroidectomy and Lateral Lymphadenectomy: A Retrospective Analysis. Effectiveness of Perioperative Finger Sensory Rehabilitation in Patients Undergoing Fingertip Amputation and Reimplantation: A Retrospective Study. A Novel Ensemble Approach for Rib Fracture Detection and Visualization using CNNs and Grad-CAM.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1