{"title":"Protein binding and folding through an evolutionary lens.","authors":"Per Jemth","doi":"10.1016/j.sbi.2024.102980","DOIUrl":null,"url":null,"abstract":"<p><p>Protein-protein associations are often mediated by an intrinsically disordered protein region interacting with a folded domain in a coupled binding and folding reaction. Classic physical organic chemistry approaches together with structural biology have shed light on mechanistic aspects of such reactions. Further insight into general principles may be obtained by interpreting the results through an evolutionary lens. This review attempts to provide an overview on how the analysis of binding and folding reactions can benefit from an evolutionary approach, and is aimed at protein scientists without a background in evolution. Evolution constantly reshapes existing proteins by sampling more or less fit variants. Most new variants are weeded out as generations and new species come and go over hundreds to hundreds of millions of years. The huge ongoing genome sequencing efforts have provided us with a snapshot of existing adapted fit-for-purpose protein homologs in thousands of different organisms. Comparison of present-day orthologs and paralogs highlights general principles of the evolution of coupled binding and folding reactions and demonstrate a great potential for evolution to operate on disordered regions and modulate affinity and specificity of the interactions.</p>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"90 ","pages":"102980"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.sbi.2024.102980","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Protein-protein associations are often mediated by an intrinsically disordered protein region interacting with a folded domain in a coupled binding and folding reaction. Classic physical organic chemistry approaches together with structural biology have shed light on mechanistic aspects of such reactions. Further insight into general principles may be obtained by interpreting the results through an evolutionary lens. This review attempts to provide an overview on how the analysis of binding and folding reactions can benefit from an evolutionary approach, and is aimed at protein scientists without a background in evolution. Evolution constantly reshapes existing proteins by sampling more or less fit variants. Most new variants are weeded out as generations and new species come and go over hundreds to hundreds of millions of years. The huge ongoing genome sequencing efforts have provided us with a snapshot of existing adapted fit-for-purpose protein homologs in thousands of different organisms. Comparison of present-day orthologs and paralogs highlights general principles of the evolution of coupled binding and folding reactions and demonstrate a great potential for evolution to operate on disordered regions and modulate affinity and specificity of the interactions.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation