Influence of dietary protein and fiber intake interactions on the human gut microbiota composition and function: a systematic review and network meta-analysis of randomized controlled trials.
Ian En Kai Mak, Yueying Yao, Magdeline Tao Tao Ng, Jung Eun Kim
{"title":"Influence of dietary protein and fiber intake interactions on the human gut microbiota composition and function: a systematic review and network meta-analysis of randomized controlled trials.","authors":"Ian En Kai Mak, Yueying Yao, Magdeline Tao Tao Ng, Jung Eun Kim","doi":"10.1080/10408398.2025.2452362","DOIUrl":null,"url":null,"abstract":"<p><p>Quantity and source of dietary protein intakes impact the gut microbiota differently. However, these effects have not been systematically studied. This review aimed to investigate these effects whilst controlling for fiber intake. Seven databases were searched, with 50 and 15 randomized controlled trials selected for the systematic review and network meta-analysis respectively. Most gut microbiota-related outcomes showed no significant differences between different protein and fiber intake combinations. Compared to Normal Protein, High Fiber intakes, High Protein, Low Fiber (HPLF) intakes showed greater fecal valerate (SMD = 0.79, 95% CrI: 0.35, 1.24) and plasma trimethylamine <i>N</i>-oxide (TMAO) (SMD = 2.90, 95% CrI: 0.16, 5.65) levels. HPLF intakes also showed greater fecal propionate (SMD = 0.49, 95% CrI: 0.02, 1.07) and valerate (SMD = 0.79, 95% CrI: 0.31, 1.28) levels compared to High Protein, High Fiber intakes. Greater plasma TMAO levels were observed with greater animal protein intakes. Overall, protein quantity and source do not generally alter the gut microbiota composition, although protein quantity can influence microbiota function via modulations in proteolytic fermentation. Both protein and fiber intake should be considered when assessing the impact of dietary protein on the gut microbiota. This trial was registered at PROSPERO (CRD42023391270).</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-19"},"PeriodicalIF":7.3000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in food science and nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10408398.2025.2452362","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantity and source of dietary protein intakes impact the gut microbiota differently. However, these effects have not been systematically studied. This review aimed to investigate these effects whilst controlling for fiber intake. Seven databases were searched, with 50 and 15 randomized controlled trials selected for the systematic review and network meta-analysis respectively. Most gut microbiota-related outcomes showed no significant differences between different protein and fiber intake combinations. Compared to Normal Protein, High Fiber intakes, High Protein, Low Fiber (HPLF) intakes showed greater fecal valerate (SMD = 0.79, 95% CrI: 0.35, 1.24) and plasma trimethylamine N-oxide (TMAO) (SMD = 2.90, 95% CrI: 0.16, 5.65) levels. HPLF intakes also showed greater fecal propionate (SMD = 0.49, 95% CrI: 0.02, 1.07) and valerate (SMD = 0.79, 95% CrI: 0.31, 1.28) levels compared to High Protein, High Fiber intakes. Greater plasma TMAO levels were observed with greater animal protein intakes. Overall, protein quantity and source do not generally alter the gut microbiota composition, although protein quantity can influence microbiota function via modulations in proteolytic fermentation. Both protein and fiber intake should be considered when assessing the impact of dietary protein on the gut microbiota. This trial was registered at PROSPERO (CRD42023391270).
期刊介绍:
Critical Reviews in Food Science and Nutrition serves as an authoritative outlet for critical perspectives on contemporary technology, food science, and human nutrition.
With a specific focus on issues of national significance, particularly for food scientists, nutritionists, and health professionals, the journal delves into nutrition, functional foods, food safety, and food science and technology. Research areas span diverse topics such as diet and disease, antioxidants, allergenicity, microbiological concerns, flavor chemistry, nutrient roles and bioavailability, pesticides, toxic chemicals and regulation, risk assessment, food safety, and emerging food products, ingredients, and technologies.