Yufeng He, Tao Liu, Danaè S Larsen, Yuexin Lei, Manchun Huang, Lin Zhu, Maria Daglia, Xiang Xiao
{"title":"Barley fermentation on nutritional constituents: structural changes and structure-function correlations.","authors":"Yufeng He, Tao Liu, Danaè S Larsen, Yuexin Lei, Manchun Huang, Lin Zhu, Maria Daglia, Xiang Xiao","doi":"10.1080/10408398.2025.2461733","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past few years, the demand for healthy grains has become increasingly important. Barley is a basic material for food and animal feed, which is considered an excellent source of multiple nutrients. However, due to limitations in processing techniques, the nutritional attributes of barley have not been completely realized. The functional profile of barley nutrients can be effectively improved by fermentation, due in large to the structural alteration of barley nutrients. The current review outlines the structural changes of barley nutrients during fermentation and summarizes the potential mechanisms by which structural alteration occurs. Correlations between the nutrient structures and their nutritional properties are also discussed. In general, fermentation leads to decreased particle size and modified internal structures of macromolecular nutrients. Enzyme action, pH alterations and interactions between nutrient matrices may contribute to these structural alterations. Barley nutrients with modified structure exhibit enhanced health promoting functions and digestive characteristics, which will further contribute to the utilization of barley resources in the food industry.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-15"},"PeriodicalIF":7.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in food science and nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10408398.2025.2461733","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past few years, the demand for healthy grains has become increasingly important. Barley is a basic material for food and animal feed, which is considered an excellent source of multiple nutrients. However, due to limitations in processing techniques, the nutritional attributes of barley have not been completely realized. The functional profile of barley nutrients can be effectively improved by fermentation, due in large to the structural alteration of barley nutrients. The current review outlines the structural changes of barley nutrients during fermentation and summarizes the potential mechanisms by which structural alteration occurs. Correlations between the nutrient structures and their nutritional properties are also discussed. In general, fermentation leads to decreased particle size and modified internal structures of macromolecular nutrients. Enzyme action, pH alterations and interactions between nutrient matrices may contribute to these structural alterations. Barley nutrients with modified structure exhibit enhanced health promoting functions and digestive characteristics, which will further contribute to the utilization of barley resources in the food industry.
期刊介绍:
Critical Reviews in Food Science and Nutrition serves as an authoritative outlet for critical perspectives on contemporary technology, food science, and human nutrition.
With a specific focus on issues of national significance, particularly for food scientists, nutritionists, and health professionals, the journal delves into nutrition, functional foods, food safety, and food science and technology. Research areas span diverse topics such as diet and disease, antioxidants, allergenicity, microbiological concerns, flavor chemistry, nutrient roles and bioavailability, pesticides, toxic chemicals and regulation, risk assessment, food safety, and emerging food products, ingredients, and technologies.