PdRu bimetallic nanoalloys with improved photothermal effect for amplified ROS-mediated tumor therapy.

IF 4.3 3区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Frontiers in Bioengineering and Biotechnology Pub Date : 2025-01-03 eCollection Date: 2024-01-01 DOI:10.3389/fbioe.2024.1523599
Yujia Liang, Shufang Ning, Mekhrdod S Kurboniyon, Khaiyom Rahmonov, Zhengmin Cai, Shirong Li, Jinling Mai, Xiaojing He, Lijuan Liu, Liping Tang, Litu Zhang, Chen Wang
{"title":"PdRu bimetallic nanoalloys with improved photothermal effect for amplified ROS-mediated tumor therapy.","authors":"Yujia Liang, Shufang Ning, Mekhrdod S Kurboniyon, Khaiyom Rahmonov, Zhengmin Cai, Shirong Li, Jinling Mai, Xiaojing He, Lijuan Liu, Liping Tang, Litu Zhang, Chen Wang","doi":"10.3389/fbioe.2024.1523599","DOIUrl":null,"url":null,"abstract":"<p><p>An emerging strategy in cancer therapy involves inducing reactive oxygen species (ROS), specifically within tumors using nanozymes. However, existing nanozymes suffer from limitations such as low reactivity, poor biocompatibility, and limited targeting capabilities, hindering their therapeutic efficacy. In response, the PdRu@PEI bimetallic nanoalloys were constructed with well-catalytic activities and effective separation of charges, which can catalyze hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) to toxic hydroxyl radical (·OH) under near-infrared laser stimulation. Through facilitating electron transfer and enhancing active sites, the enhanced peroxidase-like (POD-like) enzymatic activity and glutathione (GSH) depletion abilities of nanozymes are boosted through a simple co-reduction process, leading to promising anti-tumor activity. The electron transfer between Pd and Ru of PdRu@PEI nanoalloys contributes to POD-like activity. Then, by oxidizing endogenous overexpressed GSH, enzymatic cycling prevents GSH from consuming ROS. Furthermore, the surface plasmon resonance effect of near-infrared laser on bimetallic nanoalloys ensures its photothermal performance and its local heating, further promoting POD-like activity. The integrated multi-modal therapeutic approach of PdRu@PEI has demonstrated significant anti-cancer effects <i>in vivo</i> studies. The nanozymes exhibit high catalytic efficiency and excellent biocompatibility, offering valuable insights for the development of nano-catalysts/enzymes for biomedical applications.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"12 ","pages":"1523599"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739111/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2024.1523599","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

An emerging strategy in cancer therapy involves inducing reactive oxygen species (ROS), specifically within tumors using nanozymes. However, existing nanozymes suffer from limitations such as low reactivity, poor biocompatibility, and limited targeting capabilities, hindering their therapeutic efficacy. In response, the PdRu@PEI bimetallic nanoalloys were constructed with well-catalytic activities and effective separation of charges, which can catalyze hydrogen peroxide (H2O2) to toxic hydroxyl radical (·OH) under near-infrared laser stimulation. Through facilitating electron transfer and enhancing active sites, the enhanced peroxidase-like (POD-like) enzymatic activity and glutathione (GSH) depletion abilities of nanozymes are boosted through a simple co-reduction process, leading to promising anti-tumor activity. The electron transfer between Pd and Ru of PdRu@PEI nanoalloys contributes to POD-like activity. Then, by oxidizing endogenous overexpressed GSH, enzymatic cycling prevents GSH from consuming ROS. Furthermore, the surface plasmon resonance effect of near-infrared laser on bimetallic nanoalloys ensures its photothermal performance and its local heating, further promoting POD-like activity. The integrated multi-modal therapeutic approach of PdRu@PEI has demonstrated significant anti-cancer effects in vivo studies. The nanozymes exhibit high catalytic efficiency and excellent biocompatibility, offering valuable insights for the development of nano-catalysts/enzymes for biomedical applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有改进光热效应的PdRu双金属纳米合金用于增强ros介导的肿瘤治疗。
一种新兴的癌症治疗策略涉及诱导活性氧(ROS),特别是在肿瘤内使用纳米酶。然而,现有的纳米酶存在反应性低、生物相容性差、靶向能力有限等局限性,影响了其治疗效果。为此,构建了具有良好催化活性和有效电荷分离的PdRu@PEI双金属纳米合金,在近红外激光刺激下可催化过氧化氢(H2O2)生成有毒羟基自由基(·OH)。通过促进电子转移和增强活性位点,纳米酶通过简单的共还原过程增强了过氧化物酶样(pod样)酶活性和谷胱甘肽(GSH)消耗能力,从而具有良好的抗肿瘤活性。PdRu@PEI纳米合金的Pd和Ru之间的电子转移有助于类pod活性。然后,通过氧化内源性过表达的谷胱甘肽,酶循环阻止谷胱甘肽消耗ROS。此外,近红外激光在双金属纳米合金上的表面等离子体共振效应保证了双金属纳米合金的光热性能和局部加热,进一步促进了类pod活性。PdRu@PEI的综合多模式治疗方法在体内研究中显示出显著的抗癌作用。纳米酶具有较高的催化效率和良好的生物相容性,为生物医学纳米催化剂/酶的开发提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Bioengineering and Biotechnology
Frontiers in Bioengineering and Biotechnology Chemical Engineering-Bioengineering
CiteScore
8.30
自引率
5.30%
发文量
2270
审稿时长
12 weeks
期刊介绍: The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs. In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.
期刊最新文献
Editorial: Micro and nanoparticles for regenerative medicine. Effects of aging-related muscle degeneration on dynamic stability during walking: a musculoskeletal computer simulation study. β-ecdysone/PLGA composite scaffolds promote skull defect healing in diabetic rat. GBR assisted in situ Onlay bone grafting for the posterior maxillary horizontal ridge augmentation: a case report and literature review. An injectable, self-healing, anti-infective, and anti-inflammatory novel glycyrrhizic acid hydrogel for promoting acute wound healing and regeneration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1