{"title":"Interferon Inhibitors Increase rAAV Production in HEK293 Cells.","authors":"Yongdan Wang, Qiang Fu, Sha Sha, Seongkyu Yoon","doi":"10.1016/j.jbiotec.2025.01.009","DOIUrl":null,"url":null,"abstract":"<p><p>Recombinant adeno-associated viruses (rAAVs) comprise a promising viral vector for therapeutic gene delivery to treat disease. However, the current manufacturing capability of rAAVs must be improved to meet commercial demand. Previously published omics studies indicate that rAAV production through transient transfection triggers antiviral responses and endoplasmic reticulum stress responses in the host cell. Both responses negatively regulate viral production. We demonstrate that the modulation of the antiviral immune response (by blocking interferon signaling pathways) can effectively lower the production of interferon and enhance viral genome production. The use of interferon inhibitors before transfection can significantly increase rAAV production in HEK293 cells, with up to a 2-fold increase in productivity and up to a 6-fold increase in specific productivity. Compared to the untreated groups, the addition of these small molecules generally reduced viable cell density but increased vector productivity. The positive candidates were BX795 (a TBK inhibitor), TPCA-1 (an IKK2 inhibitor), Cyt387 (a JAK1 inhibitor), and ruxolitinib (another JAK1 inhibitor). These candidates were identified using deep well screening, and reproducible titer improvement was achieved in a 30mL shake flask scale. Additionally, genome titer improvement is feasible and scalable in two different media, but the extent of improvement may vary.</p>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiotec.2025.01.009","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recombinant adeno-associated viruses (rAAVs) comprise a promising viral vector for therapeutic gene delivery to treat disease. However, the current manufacturing capability of rAAVs must be improved to meet commercial demand. Previously published omics studies indicate that rAAV production through transient transfection triggers antiviral responses and endoplasmic reticulum stress responses in the host cell. Both responses negatively regulate viral production. We demonstrate that the modulation of the antiviral immune response (by blocking interferon signaling pathways) can effectively lower the production of interferon and enhance viral genome production. The use of interferon inhibitors before transfection can significantly increase rAAV production in HEK293 cells, with up to a 2-fold increase in productivity and up to a 6-fold increase in specific productivity. Compared to the untreated groups, the addition of these small molecules generally reduced viable cell density but increased vector productivity. The positive candidates were BX795 (a TBK inhibitor), TPCA-1 (an IKK2 inhibitor), Cyt387 (a JAK1 inhibitor), and ruxolitinib (another JAK1 inhibitor). These candidates were identified using deep well screening, and reproducible titer improvement was achieved in a 30mL shake flask scale. Additionally, genome titer improvement is feasible and scalable in two different media, but the extent of improvement may vary.
期刊介绍:
The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.