Viviana Chiappini, Debora Casbarra, Anna Maria Girelli
{"title":"Hemp tea waste-immobilized lipase for the synthesis of alkyl oleates in solvent free systems.","authors":"Viviana Chiappini, Debora Casbarra, Anna Maria Girelli","doi":"10.1016/j.jbiotec.2025.01.013","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the immobilization of lipase from Candida rugosa (CRL) on hemp tea waste to catalyze the esterification of oleic acid with primary aliphatic C2-C12 alcohols. in a solvent-free system. The immobilization method employed was adsorption, chosen for its simplicity, low cost, and ability to preserve enzyme activity. The esterification of undecanoic acid, lauric acid, and oleic acid with alcohols of varying chain lengths (ethanol, 1-propanol, 1-butanol, 1-octanol, 1-decanol, and 1-dodecanol) was studied. The esterification efficiency was found to be influenced by the type of alcohol, the molar ratio of oleic acid to alcohol, and the water content in the reaction medium. The highest conversions were achieved with ethanol (23% conversion with 18.5% water and a molar ratio of 1:5) and 1-decanol (30% conversion with no added water and a molar ratio of 1:2). Comparatively, the soluble lipase achieved slightly higher conversion of oleic acid using decanol (38%), indicating that the performance may be attributed to origin of lipase, rather than the immobilization procedure. The study demonstrated that the immobilization of lipase on hemp tea waste did not hinder enzyme activity. Additionally, the biocatalyst developed can function in a completely solvent-free system, offering a green solution by repurposing waste materials for industrial ester production.</p>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiotec.2025.01.013","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the immobilization of lipase from Candida rugosa (CRL) on hemp tea waste to catalyze the esterification of oleic acid with primary aliphatic C2-C12 alcohols. in a solvent-free system. The immobilization method employed was adsorption, chosen for its simplicity, low cost, and ability to preserve enzyme activity. The esterification of undecanoic acid, lauric acid, and oleic acid with alcohols of varying chain lengths (ethanol, 1-propanol, 1-butanol, 1-octanol, 1-decanol, and 1-dodecanol) was studied. The esterification efficiency was found to be influenced by the type of alcohol, the molar ratio of oleic acid to alcohol, and the water content in the reaction medium. The highest conversions were achieved with ethanol (23% conversion with 18.5% water and a molar ratio of 1:5) and 1-decanol (30% conversion with no added water and a molar ratio of 1:2). Comparatively, the soluble lipase achieved slightly higher conversion of oleic acid using decanol (38%), indicating that the performance may be attributed to origin of lipase, rather than the immobilization procedure. The study demonstrated that the immobilization of lipase on hemp tea waste did not hinder enzyme activity. Additionally, the biocatalyst developed can function in a completely solvent-free system, offering a green solution by repurposing waste materials for industrial ester production.
期刊介绍:
The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.