Magnus Bukhave Johansen, Andreas Erbs Hillers-Bendtsen, Hector H Corzo, Ashleigh Barnes, Kurt V Mikkelsen, Dmytro Bykov
{"title":"The divide expand consolidate scheme for unrestricted second order Møller-Plesset perturbation theory ground state energies.","authors":"Magnus Bukhave Johansen, Andreas Erbs Hillers-Bendtsen, Hector H Corzo, Ashleigh Barnes, Kurt V Mikkelsen, Dmytro Bykov","doi":"10.1063/5.0228963","DOIUrl":null,"url":null,"abstract":"<p><p>The linear scaling divide-expand-consolidate (DEC) framework is expanded to include unrestricted Hartree-Fock references. By partitioning the orbital space and employing local molecular orbitals, the full molecular calculation can be performed as independent calculations on individual fragments, making the method well-suited for massively parallel implementations. This approach also incorporates error control through the fragment optimization threshold (FOT), which maintains precision and consistency throughout the calculations. A benchmark was conducted for correlation energies of open-shell systems and the relative energies of both open- and closed-shell molecules at the MP2 level of theory. The full calculation result is achieved as the FOT approaches zero. For correlation energies, an FOT of 10-3 is sufficient to recover over 98% of the full result in all cases. However, for relative energies and the electronic energy component of oxidation potentials, a tighter FOT of 10-4 is required to keep the DEC error within 10% for both open- and closed-shell molecules. This is likely due to a lack of systematic error cancellation for the molecules with vastly different chemical natures. Therefore, for accurate relative energies, the FOT should be an order of magnitude lower, and additional caution is needed, particularly for large systems. The DEC method extension to unrestricted references maintains favorable features of linear scaling and can be implemented in a massively parallel algorithm to calculate correlation energies for large open-shell systems.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 3","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0228963","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The linear scaling divide-expand-consolidate (DEC) framework is expanded to include unrestricted Hartree-Fock references. By partitioning the orbital space and employing local molecular orbitals, the full molecular calculation can be performed as independent calculations on individual fragments, making the method well-suited for massively parallel implementations. This approach also incorporates error control through the fragment optimization threshold (FOT), which maintains precision and consistency throughout the calculations. A benchmark was conducted for correlation energies of open-shell systems and the relative energies of both open- and closed-shell molecules at the MP2 level of theory. The full calculation result is achieved as the FOT approaches zero. For correlation energies, an FOT of 10-3 is sufficient to recover over 98% of the full result in all cases. However, for relative energies and the electronic energy component of oxidation potentials, a tighter FOT of 10-4 is required to keep the DEC error within 10% for both open- and closed-shell molecules. This is likely due to a lack of systematic error cancellation for the molecules with vastly different chemical natures. Therefore, for accurate relative energies, the FOT should be an order of magnitude lower, and additional caution is needed, particularly for large systems. The DEC method extension to unrestricted references maintains favorable features of linear scaling and can be implemented in a massively parallel algorithm to calculate correlation energies for large open-shell systems.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.