Entropy-based methods for formulating bottom-up ultra-coarse-grained models.

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL Journal of Chemical Physics Pub Date : 2025-01-28 DOI:10.1063/5.0244427
Patrick G Sahrmann, Gregory A Voth
{"title":"Entropy-based methods for formulating bottom-up ultra-coarse-grained models.","authors":"Patrick G Sahrmann, Gregory A Voth","doi":"10.1063/5.0244427","DOIUrl":null,"url":null,"abstract":"<p><p>Bottom-up coarse-grained (CG) modeling is an effective means of bypassing the limited spatiotemporal scales of conventional atomistic molecular dynamics while retaining essential information from the atomistic model. A central challenge in CG modeling is the trade-off between accuracy and efficiency, as the inclusion of often pivotal many-body interaction terms in the CG force-field renders simulation markedly slower than simple pairwise models. The Ultra Coarse-Graining (UCG) method incorporates many-body terms through discrete internal state variables that modulate the CG force-field according to, e.g., changes in local environment when substantial chemical heterogeneities exist. However, assigning optimal internal states systematically from atomistic simulation data, as well as the practical application of bottom-up UCG theory to biomolecular systems, remain open problems. We develop two synergistic methods to aid in the development of UCG models that can capture inhomogeneities in atomistic systems such as those induced by phase coexistence. The first method establishes the systematic construction of UCG force-fields from a relative entropy minimization principle, while the second method utilizes machine-learning to obtain optimal local order parameters for enhanced model efficiency and transferability. We apply these methods to a methanol liquid-vapor interface and the ripple phase of a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine lipid bilayer and demonstrate that UCG modeling alone recapitulates aspects of phase coexistence that are otherwise not observed in CG modeling.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 4","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0244427","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Bottom-up coarse-grained (CG) modeling is an effective means of bypassing the limited spatiotemporal scales of conventional atomistic molecular dynamics while retaining essential information from the atomistic model. A central challenge in CG modeling is the trade-off between accuracy and efficiency, as the inclusion of often pivotal many-body interaction terms in the CG force-field renders simulation markedly slower than simple pairwise models. The Ultra Coarse-Graining (UCG) method incorporates many-body terms through discrete internal state variables that modulate the CG force-field according to, e.g., changes in local environment when substantial chemical heterogeneities exist. However, assigning optimal internal states systematically from atomistic simulation data, as well as the practical application of bottom-up UCG theory to biomolecular systems, remain open problems. We develop two synergistic methods to aid in the development of UCG models that can capture inhomogeneities in atomistic systems such as those induced by phase coexistence. The first method establishes the systematic construction of UCG force-fields from a relative entropy minimization principle, while the second method utilizes machine-learning to obtain optimal local order parameters for enhanced model efficiency and transferability. We apply these methods to a methanol liquid-vapor interface and the ripple phase of a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine lipid bilayer and demonstrate that UCG modeling alone recapitulates aspects of phase coexistence that are otherwise not observed in CG modeling.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
期刊最新文献
A NiAl-layered double hydroxides memristor with artificial synapse function and its Boolean logic applications. Excited electronic states of Na2 and K2: The potential for long-lived "reservoir" states leading to collision induced population inversions. Alchemical harmonic approximation based potential for iso-electronic diatomics: Foundational baseline for Δ-machine learning. Entropy-based methods for formulating bottom-up ultra-coarse-grained models. Exploring low barrier quantum tunneling and structural planarity in 3-methylstyrene conformers: Insights from microwave spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1