Highly accurate real-space electron densities with neural networks.

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL Journal of Chemical Physics Pub Date : 2025-01-21 DOI:10.1063/5.0236919
Lixue Cheng, P Bernát Szabó, Zeno Schätzle, Derk P Kooi, Jonas Köhler, Klaas J H Giesbertz, Frank Noé, Jan Hermann, Paola Gori-Giorgi, Adam Foster
{"title":"Highly accurate real-space electron densities with neural networks.","authors":"Lixue Cheng, P Bernát Szabó, Zeno Schätzle, Derk P Kooi, Jonas Köhler, Klaas J H Giesbertz, Frank Noé, Jan Hermann, Paola Gori-Giorgi, Adam Foster","doi":"10.1063/5.0236919","DOIUrl":null,"url":null,"abstract":"<p><p>Variational ab initio methods in quantum chemistry stand out among other methods in providing direct access to the wave function. This allows, in principle, straightforward extraction of any other observable of interest, besides the energy, but, in practice, this extraction is often technically difficult and computationally impractical. Here, we consider the electron density as a central observable in quantum chemistry and introduce a novel method to obtain accurate densities from real-space many-electron wave functions by representing the density with a neural network that captures known asymptotic properties and is trained from the wave function by score matching and noise-contrastive estimation. We use variational quantum Monte Carlo with deep-learning Ansätze to obtain highly accurate wave functions free of basis set errors and from them, using our novel method, correspondingly accurate electron densities, which we demonstrate by calculating dipole moments, nuclear forces, contact densities, and other density-based properties.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 3","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0236919","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Variational ab initio methods in quantum chemistry stand out among other methods in providing direct access to the wave function. This allows, in principle, straightforward extraction of any other observable of interest, besides the energy, but, in practice, this extraction is often technically difficult and computationally impractical. Here, we consider the electron density as a central observable in quantum chemistry and introduce a novel method to obtain accurate densities from real-space many-electron wave functions by representing the density with a neural network that captures known asymptotic properties and is trained from the wave function by score matching and noise-contrastive estimation. We use variational quantum Monte Carlo with deep-learning Ansätze to obtain highly accurate wave functions free of basis set errors and from them, using our novel method, correspondingly accurate electron densities, which we demonstrate by calculating dipole moments, nuclear forces, contact densities, and other density-based properties.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高度精确的真实空间电子密度与神经网络。
量子化学中的变分从头算方法在提供直接访问波函数的方法中脱颖而出。原则上,这允许直接提取除能量之外的任何其他可观察到的感兴趣的东西,但是,在实践中,这种提取通常在技术上是困难的,在计算上是不切实际的。在这里,我们将电子密度视为量子化学中的中心观测值,并引入了一种新的方法,通过用捕获已知渐近性质的神经网络表示密度,并通过分数匹配和噪声对比估计从波函数中训练,从而从实空间的多电子波函数中获得准确的密度。我们使用深度学习的变分量子蒙特卡罗Ansätze获得高度精确的波函数,没有基集误差,并使用我们的新方法从中获得相应准确的电子密度,我们通过计算偶极矩,核力,接触密度和其他基于密度的特性来证明这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
期刊最新文献
A NiAl-layered double hydroxides memristor with artificial synapse function and its Boolean logic applications. Excited electronic states of Na2 and K2: The potential for long-lived "reservoir" states leading to collision induced population inversions. Alchemical harmonic approximation based potential for iso-electronic diatomics: Foundational baseline for Δ-machine learning. Entropy-based methods for formulating bottom-up ultra-coarse-grained models. Exploring low barrier quantum tunneling and structural planarity in 3-methylstyrene conformers: Insights from microwave spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1