Lei Zhang, Yujie Li, Yunhao Xu, Wei Wang, Guangyu Guo
{"title":"Machine learning-driven identification of critical gene programs and key transcription factors in migraine.","authors":"Lei Zhang, Yujie Li, Yunhao Xu, Wei Wang, Guangyu Guo","doi":"10.1186/s10194-025-01950-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Migraine is a complex neurological disorder characterized by recurrent episodes of severe headaches. Although genetic factors have been implicated, the precise molecular mechanisms, particularly gene expression patterns in migraine-associated brain regions, remain unclear. This study applies machine learning techniques to explore region-specific gene expression profiles and identify critical gene programs and transcription factors linked to migraine pathogenesis.</p><p><strong>Methods: </strong>We utilized single-nucleus RNA sequencing (snRNA-seq) data from 43 brain regions, along with genome-wide association study (GWAS) data, to investigate susceptibility to migraine. The cell-type-specific expression (CELLEX) algorithm was employed to calculate specific expression profiles for each region, while non-negative matrix factorization (NMF) was applied to decompose gene programs within the single-cell data from these regions. Following the annotation of brain region expression profiles and gene programs to the genome, we employed stratified linkage disequilibrium score regression (S-LDSC) to assess the associations between brain regions, gene programs, and migraine-related SNPs. Key transcription factors regulating critical gene programs were identified using a random forest model based on regulatory networks derived from the GTEx consortium.</p><p><strong>Results: </strong>Our analysis revealed significant enrichment of migraine-associated single nucleotide polymorphisms (SNPs) in the posterior nuclear complex-medial geniculate nuclei (PoN_MG) of the thalamus, highlighting this region's crucial role in migraine pathogenesis. Gene program 1, identified through NMF, was enriched in the calcium signaling pathway, a known contributor to migraine pathophysiology. Random forest analysis predicted ARID3A as the top transcription factor regulating gene program 1, suggesting its potential role in modulating calcium-related genes involved in migraine.</p><p><strong>Conclusion: </strong>This study provides new insights into the molecular mechanisms underlying migraine, emphasizing the importance of the PoN_MG thalamic region, calcium signaling pathways, and key transcription factors like ARID3A. These findings offer potential avenues for developing targeted therapeutic strategies for migraine treatment.</p>","PeriodicalId":16013,"journal":{"name":"Journal of Headache and Pain","volume":"26 1","pages":"14"},"PeriodicalIF":7.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11745026/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Headache and Pain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10194-025-01950-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Migraine is a complex neurological disorder characterized by recurrent episodes of severe headaches. Although genetic factors have been implicated, the precise molecular mechanisms, particularly gene expression patterns in migraine-associated brain regions, remain unclear. This study applies machine learning techniques to explore region-specific gene expression profiles and identify critical gene programs and transcription factors linked to migraine pathogenesis.
Methods: We utilized single-nucleus RNA sequencing (snRNA-seq) data from 43 brain regions, along with genome-wide association study (GWAS) data, to investigate susceptibility to migraine. The cell-type-specific expression (CELLEX) algorithm was employed to calculate specific expression profiles for each region, while non-negative matrix factorization (NMF) was applied to decompose gene programs within the single-cell data from these regions. Following the annotation of brain region expression profiles and gene programs to the genome, we employed stratified linkage disequilibrium score regression (S-LDSC) to assess the associations between brain regions, gene programs, and migraine-related SNPs. Key transcription factors regulating critical gene programs were identified using a random forest model based on regulatory networks derived from the GTEx consortium.
Results: Our analysis revealed significant enrichment of migraine-associated single nucleotide polymorphisms (SNPs) in the posterior nuclear complex-medial geniculate nuclei (PoN_MG) of the thalamus, highlighting this region's crucial role in migraine pathogenesis. Gene program 1, identified through NMF, was enriched in the calcium signaling pathway, a known contributor to migraine pathophysiology. Random forest analysis predicted ARID3A as the top transcription factor regulating gene program 1, suggesting its potential role in modulating calcium-related genes involved in migraine.
Conclusion: This study provides new insights into the molecular mechanisms underlying migraine, emphasizing the importance of the PoN_MG thalamic region, calcium signaling pathways, and key transcription factors like ARID3A. These findings offer potential avenues for developing targeted therapeutic strategies for migraine treatment.
期刊介绍:
The Journal of Headache and Pain, a peer-reviewed open-access journal published under the BMC brand, a part of Springer Nature, is dedicated to researchers engaged in all facets of headache and related pain syndromes. It encompasses epidemiology, public health, basic science, translational medicine, clinical trials, and real-world data.
With a multidisciplinary approach, The Journal of Headache and Pain addresses headache medicine and related pain syndromes across all medical disciplines. It particularly encourages submissions in clinical, translational, and basic science fields, focusing on pain management, genetics, neurology, and internal medicine. The journal publishes research articles, reviews, letters to the Editor, as well as consensus articles and guidelines, aimed at promoting best practices in managing patients with headaches and related pain.