Competitive displacement of lipoprotein lipase from heparan sulfate is orchestrated by a disordered acidic cluster in GPIHBP1.

IF 5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Lipid Research Pub Date : 2025-01-13 DOI:10.1016/j.jlr.2025.100745
Anamika Biswas, Samina Arshid, Kristian Kølby Kristensen, Thomas J D Jørgensen, Michael Ploug
{"title":"Competitive displacement of lipoprotein lipase from heparan sulfate is orchestrated by a disordered acidic cluster in GPIHBP1.","authors":"Anamika Biswas, Samina Arshid, Kristian Kølby Kristensen, Thomas J D Jørgensen, Michael Ploug","doi":"10.1016/j.jlr.2025.100745","DOIUrl":null,"url":null,"abstract":"<p><p>Movement of lipoprotein lipase (LPL) from myocytes or adipocytes to the capillary lumen is essential for intravascular lipolysis and plasma triglyceride homeostasis-low LPL activity in the capillary lumen causes hypertriglyceridemia. The trans-endothelial transport of LPL depends on ionic interactions with GPIHBP1's intrinsically disordered N-terminal tail, which harbors two acidic clusters at positions 5-12 and 19-30. This polyanionic tail provides a molecular switch that controls LPL detachment from heparan sulfate proteoglycans (HSPGs) by competitive displacement. When the acidic tail was neutralized in gene-edited mice, LPL remained trapped in the sub-endothelial spaces triggering hypertriglyceridemia. Due to its disordered state, the crystal structure of LPL•GPIHBP1 provided no information on these electrostatic interactions between LPL and GPIHBP1s acidic tail. In the current study, we positioned the acidic tail on LPL using zero-length crosslinking. Acidic residues at positions 19-30 in GPIHBP1 mapped to Lys<sup>445</sup>, Lys<sup>441</sup>, Lys<sup>414</sup> and Lys<sup>407</sup> close to the interface between the C- and N-terminal domains in LPL. Modeling this interface revealed widespread polyelectrolyte interactions spanning both LPL domains, which explains why the acidic tail stabilizes LPL activity and protein conformation. In functional assays, we showed that the acidic cluster at 19-30 also had the greatest impact on preserving LPL activity, mitigating ANGPTL4-catalyzed LPL inactivation, preventing PSCK3-mediated LPL cleavage, and, importantly, displacing LPL from HSPGs. Our current study provides key insights into the biophysical mechanism(s) orchestrating intravascular compartmentalization of LPL activity-an intriguing pathway entailing competitive displacement of HSPG-bound LPL by a disordered acidic tail in GPIHBP1.</p>","PeriodicalId":16209,"journal":{"name":"Journal of Lipid Research","volume":" ","pages":"100745"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lipid Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jlr.2025.100745","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Movement of lipoprotein lipase (LPL) from myocytes or adipocytes to the capillary lumen is essential for intravascular lipolysis and plasma triglyceride homeostasis-low LPL activity in the capillary lumen causes hypertriglyceridemia. The trans-endothelial transport of LPL depends on ionic interactions with GPIHBP1's intrinsically disordered N-terminal tail, which harbors two acidic clusters at positions 5-12 and 19-30. This polyanionic tail provides a molecular switch that controls LPL detachment from heparan sulfate proteoglycans (HSPGs) by competitive displacement. When the acidic tail was neutralized in gene-edited mice, LPL remained trapped in the sub-endothelial spaces triggering hypertriglyceridemia. Due to its disordered state, the crystal structure of LPL•GPIHBP1 provided no information on these electrostatic interactions between LPL and GPIHBP1s acidic tail. In the current study, we positioned the acidic tail on LPL using zero-length crosslinking. Acidic residues at positions 19-30 in GPIHBP1 mapped to Lys445, Lys441, Lys414 and Lys407 close to the interface between the C- and N-terminal domains in LPL. Modeling this interface revealed widespread polyelectrolyte interactions spanning both LPL domains, which explains why the acidic tail stabilizes LPL activity and protein conformation. In functional assays, we showed that the acidic cluster at 19-30 also had the greatest impact on preserving LPL activity, mitigating ANGPTL4-catalyzed LPL inactivation, preventing PSCK3-mediated LPL cleavage, and, importantly, displacing LPL from HSPGs. Our current study provides key insights into the biophysical mechanism(s) orchestrating intravascular compartmentalization of LPL activity-an intriguing pathway entailing competitive displacement of HSPG-bound LPL by a disordered acidic tail in GPIHBP1.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在GPIHBP1中,脂蛋白脂肪酶从硫酸肝素中竞争性置换是由一个无序的酸性簇组织的。
脂蛋白脂肪酶(LPL)从肌细胞或脂肪细胞向毛细血管管腔的运动对于血管内脂解和血浆甘油三酯稳态至关重要——毛细血管管腔中LPL活性低会导致高甘油三酯血症。LPL的跨内皮转运依赖于与GPIHBP1内在无序的n端尾部的离子相互作用,其在5-12和19-30位置上包含两个酸性簇。这种聚阴离子尾部提供了一种分子开关,通过竞争位移控制LPL从硫酸肝素蛋白聚糖(HSPGs)中脱离。当酸性尾在基因编辑小鼠中被中和时,LPL仍然被困在内皮下空间中,引发高甘油三酯血症。由于无序状态,LPL•GPIHBP1的晶体结构无法提供LPL与GPIHBP1酸尾之间静电相互作用的信息。在目前的研究中,我们使用零长度交联将酸性尾定位在LPL上。GPIHBP1中19-30位的酸性残基定位于Lys445、Lys441、Lys414和Lys407,靠近LPL中C端和n端结构域之间的界面。对该界面的建模揭示了广泛的跨LPL结构域的多电解质相互作用,这解释了为什么酸性尾部稳定LPL活性和蛋白质构象。在功能分析中,我们发现19-30的酸性簇对保持LPL活性,减轻angptl4催化的LPL失活,防止psck3介导的LPL切割,以及重要的是,从HSPGs中取代LPL也有最大的影响。我们目前的研究为协调LPL活性的血管内区隔化的生物物理机制提供了关键的见解,这是一种有趣的途径,通过GPIHBP1中无序的酸性尾部导致hspg结合的LPL竞争性位移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Lipid Research
Journal of Lipid Research 生物-生化与分子生物学
CiteScore
11.10
自引率
4.60%
发文量
146
审稿时长
41 days
期刊介绍: The Journal of Lipid Research (JLR) publishes original articles and reviews in the broadly defined area of biological lipids. We encourage the submission of manuscripts relating to lipids, including those addressing problems in biochemistry, molecular biology, structural biology, cell biology, genetics, molecular medicine, clinical medicine and metabolism. Major criteria for acceptance of articles are new insights into mechanisms of lipid function and metabolism and/or genes regulating lipid metabolism along with sound primary experimental data. Interpretation of the data is the authors’ responsibility, and speculation should be labeled as such. Manuscripts that provide new ways of purifying, identifying and quantifying lipids are invited for the Methods section of the Journal. JLR encourages contributions from investigators in all countries, but articles must be submitted in clear and concise English.
期刊最新文献
A Multi-Ancestry Genome Wide Association Study and Evaluation of Polygenic Scores of LDL-C levels. Efficacy of a novel PCSK9 inhibitory peptide alone and with evinacumab in a mouse model of atherosclerosis. Multi-layer regulation of postprandial triglyceride metabolism in response to acute cold exposure. Cadmium-cardiolipin disruption of respirasome assembly and redox balance through mitochondrial membrane rigidification. Cholesterol affects the binding of proteins to phosphatidic acid without influencing its ionization properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1