José A Inia, Anita van Nieuwkoop-van Straalen, J Wouter Jukema, Bidda Rolin, Ellen Marie Staarup, Christina K Mogensen, Hans M G Princen, Anita M van den Hoek
{"title":"Efficacy of a novel PCSK9 inhibitory peptide alone and with evinacumab in a mouse model of atherosclerosis.","authors":"José A Inia, Anita van Nieuwkoop-van Straalen, J Wouter Jukema, Bidda Rolin, Ellen Marie Staarup, Christina K Mogensen, Hans M G Princen, Anita M van den Hoek","doi":"10.1016/j.jlr.2025.100753","DOIUrl":null,"url":null,"abstract":"<p><p>Atherosclerosis is the major cause of cardiovascular disease. This study evaluated the effect of lipid lowering using a novel peptide inhibiting proprotein convertase subtilisin/kexin type 9 (PCSK9) and a monoclonal antibody against angiopoietin-like 3 (evinacumab), either alone or in combination in APOE*3-Leiden.CETP mice fed a Western diet. Effects on body weight, plasma lipids, atherosclerotic lesion size, severity, composition and morphology were assessed. Treatment with PCSK9 inhibitory peptide significantly decreased both cholesterol and triglycerides (-69% and -68%, respectively). Similar reductions were seen in evinacumab-treated mice (-44% and -55%, respectively). The combination of evinacumab and PCSK9 inhibitory peptide lowered these levels to a larger extent than evinacumab alone (cholesterol: -74%; triglycerides: -81%). Reductions occurred in non-HDL-C without changes in HDL-C. Atherosclerotic lesion size was significantly reduced in all treatment groups compared to vehicle controls (evinacumab: -72%; PCSK9 inhibitory peptide: -97%; combination: -98%). Similarly, all interventions improved atherosclerotic lesion severity, with more undiseased segments and fewer severe lesions. Evaluation of the composition of severe atherosclerotic plaques revealed significant improvement in lesion stability in mice treated with both evinacumab and PCSK9 inhibitory peptide, attributable to decreased macrophage content and increased collagen content. Additionally, evaluation of lipid concentrations in cynomolgus monkeys revealed the beneficial effects of the PCSK9 inhibitory peptide on total cholesterol and LDL-C levels. Together these data demonstrate that treatment with evinacumab and PCSK9 inhibitory peptide alone and in combination reduces lipids, development of atherosclerosis and improves lesion composition, making it a promising approach for treatment of atherosclerosis.</p>","PeriodicalId":16209,"journal":{"name":"Journal of Lipid Research","volume":" ","pages":"100753"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lipid Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jlr.2025.100753","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Atherosclerosis is the major cause of cardiovascular disease. This study evaluated the effect of lipid lowering using a novel peptide inhibiting proprotein convertase subtilisin/kexin type 9 (PCSK9) and a monoclonal antibody against angiopoietin-like 3 (evinacumab), either alone or in combination in APOE*3-Leiden.CETP mice fed a Western diet. Effects on body weight, plasma lipids, atherosclerotic lesion size, severity, composition and morphology were assessed. Treatment with PCSK9 inhibitory peptide significantly decreased both cholesterol and triglycerides (-69% and -68%, respectively). Similar reductions were seen in evinacumab-treated mice (-44% and -55%, respectively). The combination of evinacumab and PCSK9 inhibitory peptide lowered these levels to a larger extent than evinacumab alone (cholesterol: -74%; triglycerides: -81%). Reductions occurred in non-HDL-C without changes in HDL-C. Atherosclerotic lesion size was significantly reduced in all treatment groups compared to vehicle controls (evinacumab: -72%; PCSK9 inhibitory peptide: -97%; combination: -98%). Similarly, all interventions improved atherosclerotic lesion severity, with more undiseased segments and fewer severe lesions. Evaluation of the composition of severe atherosclerotic plaques revealed significant improvement in lesion stability in mice treated with both evinacumab and PCSK9 inhibitory peptide, attributable to decreased macrophage content and increased collagen content. Additionally, evaluation of lipid concentrations in cynomolgus monkeys revealed the beneficial effects of the PCSK9 inhibitory peptide on total cholesterol and LDL-C levels. Together these data demonstrate that treatment with evinacumab and PCSK9 inhibitory peptide alone and in combination reduces lipids, development of atherosclerosis and improves lesion composition, making it a promising approach for treatment of atherosclerosis.
期刊介绍:
The Journal of Lipid Research (JLR) publishes original articles and reviews in the broadly defined area of biological lipids. We encourage the submission of manuscripts relating to lipids, including those addressing problems in biochemistry, molecular biology, structural biology, cell biology, genetics, molecular medicine, clinical medicine and metabolism. Major criteria for acceptance of articles are new insights into mechanisms of lipid function and metabolism and/or genes regulating lipid metabolism along with sound primary experimental data. Interpretation of the data is the authors’ responsibility, and speculation should be labeled as such. Manuscripts that provide new ways of purifying, identifying and quantifying lipids are invited for the Methods section of the Journal. JLR encourages contributions from investigators in all countries, but articles must be submitted in clear and concise English.