{"title":"Lattice thermal conductivity in CrSBr: the effects of interlayer interaction, magnetic ordering and external strain.","authors":"Ying Liu, Yupeng Zhi, Qinxi Liu, Yinqiao Liu, Xue Jiang, Jijun Zhao","doi":"10.1088/1361-648X/adac22","DOIUrl":null,"url":null,"abstract":"<p><p>With the continuous development of digital information and big data technologies, the ambient temperature and heat generation during the operation of magnetic storage devices play an increasingly crucial role in ensuring data security and device stability. In this study, we conducted a thorough investigation on in-plane lattice thermal conductivity of the van der Waals (vdWs) magnetic semiconductor CrSBr from bulk to monolayer using first-principles calculations and phonon Boltzmann transport equation. Our findings indicated that CrSBr show strong anisotropic thermal transport behaviors and layer number and magnetic ordering dependent lattice thermal conductivity. The lowest thermal conductivity is observed in y direction of antiferromagnetic CrSBr bilayer at all temperatures. Through the analysis of phonon spectra, phonon lifetime, heat capacity, scattering probability, phonon-phonon interaction strength, we demonstrated that out of plane acoustic phonon modes soften, the shift of Cr-Br antisymmetrical stretching vibrations, and large phonon band gap are the main factors. These results offer a comprehensive insight into phonon transport phenomena in vdWs magnetic materials.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adac22","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
With the continuous development of digital information and big data technologies, the ambient temperature and heat generation during the operation of magnetic storage devices play an increasingly crucial role in ensuring data security and device stability. In this study, we conducted a thorough investigation on in-plane lattice thermal conductivity of the van der Waals (vdWs) magnetic semiconductor CrSBr from bulk to monolayer using first-principles calculations and phonon Boltzmann transport equation. Our findings indicated that CrSBr show strong anisotropic thermal transport behaviors and layer number and magnetic ordering dependent lattice thermal conductivity. The lowest thermal conductivity is observed in y direction of antiferromagnetic CrSBr bilayer at all temperatures. Through the analysis of phonon spectra, phonon lifetime, heat capacity, scattering probability, phonon-phonon interaction strength, we demonstrated that out of plane acoustic phonon modes soften, the shift of Cr-Br antisymmetrical stretching vibrations, and large phonon band gap are the main factors. These results offer a comprehensive insight into phonon transport phenomena in vdWs magnetic materials.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.