{"title":"Fundamental physical constants, operation of physical phenomena and entropy increase.","authors":"Kostya Trachenko","doi":"10.1088/1361-648X/adb9ae","DOIUrl":null,"url":null,"abstract":"<p><p>Approaching the problem of understanding fundamental physical constants (FPCs) started with discussing the role these constants play in high-energy nuclear physics and astrophysics. Condensed matter physics was relatively unexplored in this regard. More recently, it was realised that FPCs set lower or upper bounds on key condensed matter properties. Here, we discuss a wider role played by FPCs in condensed matter physics: at given environmental conditions, FPCs set the observability and operation of entire physical effects and phenomena. We discuss structural and superconducting phase transitions and transitions between different states of matter. We also discuss metastable states, transitions between them, chemical reactions and their products. An interesting byproduct of this discussion is that the order of magnitude of the transition temperature can be calculated from FPCs. We show that the new states emerging as a result of various transitions increase the phase space and entropy. Were FPCs to take different values, these transitions would become inoperative at our environmental conditions and the new states due to these transitions would not emerge. This suggests that the current values of FPCs, by enabling various transitions and reactions which give rise to new states, promote entropy increase. We conjecture that entropy increase is a selection principle for FPCs considered to be variable in earlier discussions.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adb9ae","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Approaching the problem of understanding fundamental physical constants (FPCs) started with discussing the role these constants play in high-energy nuclear physics and astrophysics. Condensed matter physics was relatively unexplored in this regard. More recently, it was realised that FPCs set lower or upper bounds on key condensed matter properties. Here, we discuss a wider role played by FPCs in condensed matter physics: at given environmental conditions, FPCs set the observability and operation of entire physical effects and phenomena. We discuss structural and superconducting phase transitions and transitions between different states of matter. We also discuss metastable states, transitions between them, chemical reactions and their products. An interesting byproduct of this discussion is that the order of magnitude of the transition temperature can be calculated from FPCs. We show that the new states emerging as a result of various transitions increase the phase space and entropy. Were FPCs to take different values, these transitions would become inoperative at our environmental conditions and the new states due to these transitions would not emerge. This suggests that the current values of FPCs, by enabling various transitions and reactions which give rise to new states, promote entropy increase. We conjecture that entropy increase is a selection principle for FPCs considered to be variable in earlier discussions.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.