Yingtong Luo, Yudong Li, Loai K E A Abdelmohsen, Jingxin Shao, Jan C M van Hest
{"title":"Polymeric Nanoarchitectures: Advanced Cargo Systems for Biological Applications.","authors":"Yingtong Luo, Yudong Li, Loai K E A Abdelmohsen, Jingxin Shao, Jan C M van Hest","doi":"10.1002/mabi.202400540","DOIUrl":null,"url":null,"abstract":"<p><p>Polymeric nanoarchitectures are crafted from amphiphilic block copolymers through a meticulous self-assembly process. The composition of these block copolymers is finely adjustable, bestowing precise control over the characteristics and properties of the resultant polymeric assemblies. These nanoparticles have garnered significant attention, particularly in the realm of biological sciences, owing to their biocompatibility, favorable pharmacokinetics, and facile chemically modifiable nature. Among the myriad of polymeric nanoarchitectures, micelles and polymersomes stand out as frontrunners, exhibiting much potential as cargo carrier systems for diverse bio-applications. This review elucidates the design strategies employed for amphiphilic block copolymers and their resultant assemblies, specifically focusing on micelles and polymersomes. Subsequently, it discusses their wide-ranging bio-applications, spanning from drug delivery and diagnostics to bioimaging and artificial cell applications. Finally, a reflective analysis will be provided, highlighting the current landscape of polymeric cargo carriers, and discussing the opportunities and challenges that lie ahead. With this review, it is aimed to summarize the recent advances in polymeric assemblies and their applications in the biomedical field.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e2400540"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/mabi.202400540","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Polymeric nanoarchitectures are crafted from amphiphilic block copolymers through a meticulous self-assembly process. The composition of these block copolymers is finely adjustable, bestowing precise control over the characteristics and properties of the resultant polymeric assemblies. These nanoparticles have garnered significant attention, particularly in the realm of biological sciences, owing to their biocompatibility, favorable pharmacokinetics, and facile chemically modifiable nature. Among the myriad of polymeric nanoarchitectures, micelles and polymersomes stand out as frontrunners, exhibiting much potential as cargo carrier systems for diverse bio-applications. This review elucidates the design strategies employed for amphiphilic block copolymers and their resultant assemblies, specifically focusing on micelles and polymersomes. Subsequently, it discusses their wide-ranging bio-applications, spanning from drug delivery and diagnostics to bioimaging and artificial cell applications. Finally, a reflective analysis will be provided, highlighting the current landscape of polymeric cargo carriers, and discussing the opportunities and challenges that lie ahead. With this review, it is aimed to summarize the recent advances in polymeric assemblies and their applications in the biomedical field.
期刊介绍:
Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals.
Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers.
With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.