{"title":"Quercetin mediates the therapeutic effect of <i>Centella asiatica</i> on psoriasis by regulating STAT3 phosphorylation to inhibit the IL-23/IL-17A axis.","authors":"Qing Liu, Jing Liu, Yihang Zheng, Jin Lei, Jianhua Huang, Siyu Liu, Fang Liu, Qunlong Peng, Yuanfang Zhang, Junjie Wang, Yujuan Li","doi":"10.12122/j.issn.1673-4254.2025.01.12","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To explore the active components that mediate the therapeutic effect of <i>Centella asiatica</i> on psoriasis and their therapeutic mechanisms.</p><p><strong>Methods: </strong>TCMSP, TCMIP, PharmMapper, Swiss Target Prediction, GeneCards, OMIM and TTD databases were searched for the compounds in <i>Centella asiatica</i> and their targets and the disease targets of psoriasis. A drug-active component-target network and the protein-protein interaction network were constructed, and DAVID database was used for pathway enrichment analysis. In a RAW264.7 macrophage model of LPS-induced inflammation, the anti-inflammatory effect of 7.5, 15, 30, and 60 μmol/L quercetin, asiaticoside, and asiatic acid, which were identified as the main active components in <i>Centella asiatica</i>, were tested by measuring cellular production of NO, TNF‑α and IL-6 using Griess method and ELISA and by detecting mRNA expressions of IL-23, IL-17A, TNF-α and IL-6 and protein expressions of p-STAT3 (Tyr705) and p-STAT3 (Ser727) with RT-qPCR and Western blotting.</p><p><strong>Results: </strong>A total of 139 targets of <i>Centella asiatica</i> and 4604 targets of psoriasis were obtained, and among them CASP3, EGFR, PTGS2, and ESR1 were identified as the core targets. KEGG analysis suggested that quercetin, asiaticoside, and asiatic acid in <i>Centella asiatica</i> were involved in cancer and IL-17 and MAPK signaling pathways. In the RAW264.7 macrophage model of inflammation, treatment with quercetin significantly reduced cellular production of NO, TNF‑α and IL-6, and lowered mRNA expressions of IL-23, IL-17A, TNF‑α and IL-6 and protein expressions of p-STAT3 (Tyr705) and p-STAT3 (Ser727).</p><p><strong>Conclusions: </strong>Quercetin, asiaticoside and asiatic acid are the main active components in <i>Centella asiatica</i> to mediate the therapeutic effect against psoriasis, and quercetin in particular is capable of suppressing cellular production of NO, TNF‑α and IL-6 and regulating the IL-23/IL-17A inflammatory axis by mediating STAT3 phosphorylation to inhibit inflammatory response.</p>","PeriodicalId":18962,"journal":{"name":"南方医科大学学报杂志","volume":"45 1","pages":"90-99"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744291/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"南方医科大学学报杂志","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12122/j.issn.1673-4254.2025.01.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: To explore the active components that mediate the therapeutic effect of Centella asiatica on psoriasis and their therapeutic mechanisms.
Methods: TCMSP, TCMIP, PharmMapper, Swiss Target Prediction, GeneCards, OMIM and TTD databases were searched for the compounds in Centella asiatica and their targets and the disease targets of psoriasis. A drug-active component-target network and the protein-protein interaction network were constructed, and DAVID database was used for pathway enrichment analysis. In a RAW264.7 macrophage model of LPS-induced inflammation, the anti-inflammatory effect of 7.5, 15, 30, and 60 μmol/L quercetin, asiaticoside, and asiatic acid, which were identified as the main active components in Centella asiatica, were tested by measuring cellular production of NO, TNF‑α and IL-6 using Griess method and ELISA and by detecting mRNA expressions of IL-23, IL-17A, TNF-α and IL-6 and protein expressions of p-STAT3 (Tyr705) and p-STAT3 (Ser727) with RT-qPCR and Western blotting.
Results: A total of 139 targets of Centella asiatica and 4604 targets of psoriasis were obtained, and among them CASP3, EGFR, PTGS2, and ESR1 were identified as the core targets. KEGG analysis suggested that quercetin, asiaticoside, and asiatic acid in Centella asiatica were involved in cancer and IL-17 and MAPK signaling pathways. In the RAW264.7 macrophage model of inflammation, treatment with quercetin significantly reduced cellular production of NO, TNF‑α and IL-6, and lowered mRNA expressions of IL-23, IL-17A, TNF‑α and IL-6 and protein expressions of p-STAT3 (Tyr705) and p-STAT3 (Ser727).
Conclusions: Quercetin, asiaticoside and asiatic acid are the main active components in Centella asiatica to mediate the therapeutic effect against psoriasis, and quercetin in particular is capable of suppressing cellular production of NO, TNF‑α and IL-6 and regulating the IL-23/IL-17A inflammatory axis by mediating STAT3 phosphorylation to inhibit inflammatory response.