UDA-seq: universal droplet microfluidics-based combinatorial indexing for massive-scale multimodal single-cell sequencing.

IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Nature Methods Pub Date : 2025-01-20 DOI:10.1038/s41592-024-02586-y
Yun Li, Zheng Huang, Lubin Xu, Yanling Fan, Jun Ping, Guochao Li, Yanjie Chen, Chengwei Yu, Qifei Wang, Turun Song, Tao Lin, Mengmeng Liu, Yangqing Xu, Na Ai, Xini Meng, Qin Qiao, Hongbin Ji, Zhen Qin, Shuo Jin, Nan Jiang, Minxian Wang, Shaokun Shu, Feng Zhang, Weiqi Zhang, Guang-Hui Liu, Limeng Chen, Lan Jiang
{"title":"UDA-seq: universal droplet microfluidics-based combinatorial indexing for massive-scale multimodal single-cell sequencing.","authors":"Yun Li, Zheng Huang, Lubin Xu, Yanling Fan, Jun Ping, Guochao Li, Yanjie Chen, Chengwei Yu, Qifei Wang, Turun Song, Tao Lin, Mengmeng Liu, Yangqing Xu, Na Ai, Xini Meng, Qin Qiao, Hongbin Ji, Zhen Qin, Shuo Jin, Nan Jiang, Minxian Wang, Shaokun Shu, Feng Zhang, Weiqi Zhang, Guang-Hui Liu, Limeng Chen, Lan Jiang","doi":"10.1038/s41592-024-02586-y","DOIUrl":null,"url":null,"abstract":"<p><p>The use of single-cell combinatorial indexing sequencing via droplet microfluidics presents an attractive approach for balancing cost, scalability, robustness and accessibility. However, existing methods often require tailored protocols for individual modalities, limiting their automation potential and clinical applicability. To address this, we introduce UDA-seq, a universal workflow that integrates a post-indexing step to enhance throughput and systematically adapt existing droplet-based single-cell multimodal methods. UDA-seq was benchmarked across various tissue and cell types, enabling several common multimodal analyses, including single-cell co-assay of RNA and VDJ, RNA and chromatin, and RNA and CRISPR perturbation. Notably, UDA-seq facilitated the efficient generation of over 100,000 high-quality single-cell datasets from three dozen frozen clinical biopsy specimens within a single-channel droplet microfluidics experiment. Downstream analysis demonstrated the robustness of this approach in identifying rare cell subpopulations associated with clinical phenotypes and exploring the vulnerability of cancer cells.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-024-02586-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The use of single-cell combinatorial indexing sequencing via droplet microfluidics presents an attractive approach for balancing cost, scalability, robustness and accessibility. However, existing methods often require tailored protocols for individual modalities, limiting their automation potential and clinical applicability. To address this, we introduce UDA-seq, a universal workflow that integrates a post-indexing step to enhance throughput and systematically adapt existing droplet-based single-cell multimodal methods. UDA-seq was benchmarked across various tissue and cell types, enabling several common multimodal analyses, including single-cell co-assay of RNA and VDJ, RNA and chromatin, and RNA and CRISPR perturbation. Notably, UDA-seq facilitated the efficient generation of over 100,000 high-quality single-cell datasets from three dozen frozen clinical biopsy specimens within a single-channel droplet microfluidics experiment. Downstream analysis demonstrated the robustness of this approach in identifying rare cell subpopulations associated with clinical phenotypes and exploring the vulnerability of cancer cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UDA-seq:用于大规模多模态单细胞测序的通用微流控组合索引。
利用液滴微流体进行单细胞组合索引测序是一种平衡成本、可扩展性、鲁棒性和可及性的有吸引力的方法。然而,现有的方法往往需要为个体模式量身定制方案,限制了它们的自动化潜力和临床适用性。为了解决这个问题,我们引入了UDA-seq,这是一个通用的工作流程,集成了索引后步骤,以提高吞吐量,并系统地适应现有的基于液滴的单细胞多模态方法。UDA-seq在各种组织和细胞类型中进行基准测试,实现几种常见的多模态分析,包括RNA和VDJ, RNA和染色质以及RNA和CRISPR扰动的单细胞联合分析。值得注意的是,在单通道液滴微流体实验中,UDA-seq促进了从36个冷冻临床活检标本中高效生成超过100,000个高质量单细胞数据集。下游分析证明了该方法在识别与临床表型相关的罕见细胞亚群和探索癌细胞易感性方面的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
期刊最新文献
Author Correction: Arkitekt: streaming analysis and real-time workflows for microscopy. Capture of membrane proteins in their native membrane milieu. UDA-seq: universal droplet microfluidics-based combinatorial indexing for massive-scale multimodal single-cell sequencing. Author Correction: Large-scale benchmarking of circRNA detection tools reveals large differences in sensitivity but not in precision. Challenging the Astral mass analyzer to quantify up to 5,300 proteins per single cell at unseen accuracy to uncover cellular heterogeneity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1