Yun Li, Zheng Huang, Lubin Xu, Yanling Fan, Jun Ping, Guochao Li, Yanjie Chen, Chengwei Yu, Qifei Wang, Turun Song, Tao Lin, Mengmeng Liu, Yangqing Xu, Na Ai, Xini Meng, Qin Qiao, Hongbin Ji, Zhen Qin, Shuo Jin, Nan Jiang, Minxian Wang, Shaokun Shu, Feng Zhang, Weiqi Zhang, Guang-Hui Liu, Limeng Chen, Lan Jiang
{"title":"UDA-seq: universal droplet microfluidics-based combinatorial indexing for massive-scale multimodal single-cell sequencing.","authors":"Yun Li, Zheng Huang, Lubin Xu, Yanling Fan, Jun Ping, Guochao Li, Yanjie Chen, Chengwei Yu, Qifei Wang, Turun Song, Tao Lin, Mengmeng Liu, Yangqing Xu, Na Ai, Xini Meng, Qin Qiao, Hongbin Ji, Zhen Qin, Shuo Jin, Nan Jiang, Minxian Wang, Shaokun Shu, Feng Zhang, Weiqi Zhang, Guang-Hui Liu, Limeng Chen, Lan Jiang","doi":"10.1038/s41592-024-02586-y","DOIUrl":null,"url":null,"abstract":"<p><p>The use of single-cell combinatorial indexing sequencing via droplet microfluidics presents an attractive approach for balancing cost, scalability, robustness and accessibility. However, existing methods often require tailored protocols for individual modalities, limiting their automation potential and clinical applicability. To address this, we introduce UDA-seq, a universal workflow that integrates a post-indexing step to enhance throughput and systematically adapt existing droplet-based single-cell multimodal methods. UDA-seq was benchmarked across various tissue and cell types, enabling several common multimodal analyses, including single-cell co-assay of RNA and VDJ, RNA and chromatin, and RNA and CRISPR perturbation. Notably, UDA-seq facilitated the efficient generation of over 100,000 high-quality single-cell datasets from three dozen frozen clinical biopsy specimens within a single-channel droplet microfluidics experiment. Downstream analysis demonstrated the robustness of this approach in identifying rare cell subpopulations associated with clinical phenotypes and exploring the vulnerability of cancer cells.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-024-02586-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The use of single-cell combinatorial indexing sequencing via droplet microfluidics presents an attractive approach for balancing cost, scalability, robustness and accessibility. However, existing methods often require tailored protocols for individual modalities, limiting their automation potential and clinical applicability. To address this, we introduce UDA-seq, a universal workflow that integrates a post-indexing step to enhance throughput and systematically adapt existing droplet-based single-cell multimodal methods. UDA-seq was benchmarked across various tissue and cell types, enabling several common multimodal analyses, including single-cell co-assay of RNA and VDJ, RNA and chromatin, and RNA and CRISPR perturbation. Notably, UDA-seq facilitated the efficient generation of over 100,000 high-quality single-cell datasets from three dozen frozen clinical biopsy specimens within a single-channel droplet microfluidics experiment. Downstream analysis demonstrated the robustness of this approach in identifying rare cell subpopulations associated with clinical phenotypes and exploring the vulnerability of cancer cells.
期刊介绍:
Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.