The show must go on: a reliability assessment platform for resistive random access memory crossbars.

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences Pub Date : 2025-01-01 Epub Date: 2025-01-16 DOI:10.1098/rsta.2023.0387
Rebecca Pelke, Felix Staudigl, Niklas Thomas, Mohammed Hossein, Nils Bosbach, José Cubero-Cascante, Rainer Leupers, Jan Moritz Joseph
{"title":"The show must go on: a reliability assessment platform for resistive random access memory crossbars.","authors":"Rebecca Pelke, Felix Staudigl, Niklas Thomas, Mohammed Hossein, Nils Bosbach, José Cubero-Cascante, Rainer Leupers, Jan Moritz Joseph","doi":"10.1098/rsta.2023.0387","DOIUrl":null,"url":null,"abstract":"<p><p>Resistive random access memory (ReRAM) holds promise for building computing-in-memory (CIM) architectures to execute machine learning (ML) applications. However, existing ReRAM technology faces challenges such as cell and cycle variability, read-disturb and limited endurance, necessitating improvements in devices, algorithms and applications. Understanding the behaviour of ReRAM technologies is crucial for advancement. Existing platforms can either only characterize single cells and do not support CIM operations, or lack a comprehensive software stack for simple system integration. This article introduces NeuroBreakoutBoard (NBB), a versatile, integrable and portable instrumentation platform for ReRAM crossbars. The platform features a software stack enabling experiments via Python from a host PC. In a case study, we demonstrate the capabilities of NBB by conducting diverse experiments on TiN/Ti/HfO<sub>2</sub>/TiN cells. Our results show that NBB can characterize individual cells and perform CIM operations with a relative measurement error below 2%.This article is part of the theme issue 'Emerging technologies for future secure computing platforms'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"383 2288","pages":"20230387"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2023.0387","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Resistive random access memory (ReRAM) holds promise for building computing-in-memory (CIM) architectures to execute machine learning (ML) applications. However, existing ReRAM technology faces challenges such as cell and cycle variability, read-disturb and limited endurance, necessitating improvements in devices, algorithms and applications. Understanding the behaviour of ReRAM technologies is crucial for advancement. Existing platforms can either only characterize single cells and do not support CIM operations, or lack a comprehensive software stack for simple system integration. This article introduces NeuroBreakoutBoard (NBB), a versatile, integrable and portable instrumentation platform for ReRAM crossbars. The platform features a software stack enabling experiments via Python from a host PC. In a case study, we demonstrate the capabilities of NBB by conducting diverse experiments on TiN/Ti/HfO2/TiN cells. Our results show that NBB can characterize individual cells and perform CIM operations with a relative measurement error below 2%.This article is part of the theme issue 'Emerging technologies for future secure computing platforms'.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个电阻式随机存取存储器横条的可靠性评估平台必须继续下去。
电阻式随机存取存储器(ReRAM)有望构建内存中计算(CIM)架构,以执行机器学习(ML)应用程序。然而,现有的ReRAM技术面临着诸如细胞和周期可变性、读取干扰和有限的耐用性等挑战,需要对设备、算法和应用进行改进。了解ReRAM技术的行为对技术进步至关重要。现有的平台要么只能描述单个单元,不支持CIM操作,要么缺乏用于简单系统集成的全面软件堆栈。本文介绍了NeuroBreakoutBoard (NBB),这是一种多功能,可集成和便携式的ReRAM横梁仪器平台。该平台的特点是一个软件栈,可以在主机PC上通过Python进行实验。在一个案例研究中,我们通过在TiN/Ti/HfO2/TiN电池上进行各种实验来证明NBB的能力。我们的研究结果表明,NBB可以表征单个电池并在相对测量误差低于2%的情况下执行CIM操作。本文是“未来安全计算平台的新兴技术”主题的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
期刊最新文献
Examining the human-centred challenges of human-swarm interaction. Human-inspired strategies for controlling swarm systems. Machine teaching in Swarm Metaverse under different levels of autonomy. On the ethical governance of swarm robotic systems in the real world. Performance prediction of hub-based swarms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1