Patrick Nalepka, Gaurav Patil, Rachel W Kallen, Michael J Richardson
{"title":"Human-inspired strategies for controlling swarm systems.","authors":"Patrick Nalepka, Gaurav Patil, Rachel W Kallen, Michael J Richardson","doi":"10.1098/rsta.2024.0147","DOIUrl":null,"url":null,"abstract":"<p><p>The control of swarms has emerged as a paradigmatic example of human-autonomy teaming. This review focuses on understanding human coordination behaviours, while controlling evasive autonomous agents, to inform the design of human-compatible teammates. We summarize the solutions employed by human dyads, as well as the verbal communication and division of labour strategies observed in four-person teams using virtual simulations. Additionally, we provide an overview of the design of artificial agents that replicate human-like dynamics using task-dynamical models, and which can be integrated into human-autonomy teams. Finally, we conclude with open questions regarding the preservation of situation awareness and trust within human-autonomous swarming teams.This article is part of the theme issue 'The road forward with swarm systems'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"383 2289","pages":"20240147"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11779539/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0147","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The control of swarms has emerged as a paradigmatic example of human-autonomy teaming. This review focuses on understanding human coordination behaviours, while controlling evasive autonomous agents, to inform the design of human-compatible teammates. We summarize the solutions employed by human dyads, as well as the verbal communication and division of labour strategies observed in four-person teams using virtual simulations. Additionally, we provide an overview of the design of artificial agents that replicate human-like dynamics using task-dynamical models, and which can be integrated into human-autonomy teams. Finally, we conclude with open questions regarding the preservation of situation awareness and trust within human-autonomous swarming teams.This article is part of the theme issue 'The road forward with swarm systems'.
期刊介绍:
Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.