Construing the resilience to osmotic stress using endophytic fungus in maize (Zea mays L.).

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Plant Molecular Biology Pub Date : 2025-01-17 DOI:10.1007/s11103-025-01550-4
Roopashree Byregowda, S Rajendra Prasad, M K Prasannakumar
{"title":"Construing the resilience to osmotic stress using endophytic fungus in maize (Zea mays L.).","authors":"Roopashree Byregowda, S Rajendra Prasad, M K Prasannakumar","doi":"10.1007/s11103-025-01550-4","DOIUrl":null,"url":null,"abstract":"<p><p>In a wake of shifting climatic scenarios, plants are frequently forced to undergo a spectrum of abiotic and biotic stresses at various stages of growth, many of which have a detrimental effect on production and survival. Naturally, microbial consortia partner up to boost plant growth and constitute a diversified ecosystem against abiotic stresses. Despite this, little is known pertaining to the interplay between endophytic microbes which release phytohormones and stimulate plant development in stressed environments. In a lab study, we demonstrated that an endophyte isolated from the Kargil region of India, a Fusarium equiseti strain K23-FE, colonizes the maize hybrid MAH 14 - 5, promoting its growth and conferring polyethylene glycol (PEG)-induced osmotic stress tolerance. To unravel the molecular mechanism, maize seedlings inoculated with endophyte were subjected to comparative transcriptomic analysis. In response to osmotic stress, genes associated with metabolic, photosynthesis, secondary metabolites, and terpene biosynthesis pathways were highly upregulated in endophyte enriched maize seedlings. Further, in a greenhouse experiment, maize plants inoculated with fungal endophyte showed higher relative leaf water content, chlorophyll content, and antioxidant enzyme activity such as polyphenol oxidase (PPO) and catalase (CAT) under 50% field capacity conditions. Osmoprotectant like proline were higher and malondialdehyde content was reduced in colonized plants. This study set as proof of concept to demonstrate that endophytes adapted to adverse environments can efficiently tweak non-host plant responses to abiotic stresses such as water deficit stress via physiological and molecular pathways, offering a huge opportunity for their deployment in sustainable agriculture.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 1","pages":"22"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-025-01550-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In a wake of shifting climatic scenarios, plants are frequently forced to undergo a spectrum of abiotic and biotic stresses at various stages of growth, many of which have a detrimental effect on production and survival. Naturally, microbial consortia partner up to boost plant growth and constitute a diversified ecosystem against abiotic stresses. Despite this, little is known pertaining to the interplay between endophytic microbes which release phytohormones and stimulate plant development in stressed environments. In a lab study, we demonstrated that an endophyte isolated from the Kargil region of India, a Fusarium equiseti strain K23-FE, colonizes the maize hybrid MAH 14 - 5, promoting its growth and conferring polyethylene glycol (PEG)-induced osmotic stress tolerance. To unravel the molecular mechanism, maize seedlings inoculated with endophyte were subjected to comparative transcriptomic analysis. In response to osmotic stress, genes associated with metabolic, photosynthesis, secondary metabolites, and terpene biosynthesis pathways were highly upregulated in endophyte enriched maize seedlings. Further, in a greenhouse experiment, maize plants inoculated with fungal endophyte showed higher relative leaf water content, chlorophyll content, and antioxidant enzyme activity such as polyphenol oxidase (PPO) and catalase (CAT) under 50% field capacity conditions. Osmoprotectant like proline were higher and malondialdehyde content was reduced in colonized plants. This study set as proof of concept to demonstrate that endophytes adapted to adverse environments can efficiently tweak non-host plant responses to abiotic stresses such as water deficit stress via physiological and molecular pathways, offering a huge opportunity for their deployment in sustainable agriculture.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用玉米内生真菌(Zea mays L.)构建玉米对渗透胁迫的恢复力。
随着气候情景的变化,植物在生长的不同阶段经常被迫承受一系列非生物和生物胁迫,其中许多胁迫对生产和生存产生不利影响。自然地,微生物联盟合作促进植物生长,并构成一个多样化的生态系统对抗非生物胁迫。尽管如此,关于在逆境环境中释放植物激素和刺激植物发育的内生微生物之间的相互作用知之甚少。在一项实验室研究中,我们证明了从印度Kargil地区分离的内生菌镰刀菌(Fusarium equiseti)菌株K23-FE定殖在玉米杂种MAH 14 - 5上,促进其生长并赋予聚乙二醇(PEG)诱导的渗透胁迫耐受性。为了揭示分子机制,对接种内生菌的玉米幼苗进行了比较转录组分析。在渗透胁迫下,与代谢、光合作用、次生代谢物和萜烯生物合成途径相关的基因在内生菌富集的玉米幼苗中高度上调。此外,在温室试验中,在50%田间容量条件下,接种真菌内生菌的玉米植株叶片相对含水量、叶绿素含量以及多酚氧化酶(PPO)和过氧化氢酶(CAT)等抗氧化酶活性均有所提高。定殖植株中脯氨酸等渗透保护剂含量升高,丙二醛含量降低。该研究证明了适应不利环境的内生菌可以通过生理和分子途径有效地调节非寄主植物对非生物胁迫(如缺水胁迫)的反应,为其在可持续农业中的应用提供了巨大的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Molecular Biology
Plant Molecular Biology 生物-生化与分子生物学
自引率
2.00%
发文量
95
审稿时长
1.4 months
期刊介绍: Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.
期刊最新文献
Dwarfs standing tall: breeding towards the 'Yellow revolution' through insights into plant height regulation. Identification and expression pattern analysis of BpGRAS gene family in Bergenia purpurascens and functional characterization of BpGRAS9 in salt tolerance. Folate depletion impact on the cell cycle results in restricted primary root growth in Arabidopsis. WRKY transcription factor MdWRKY71 regulates flowering time in apple. The role of the sucrose synthase gene in promoting thorn occurrence and vegetative growth in Lycium ruthenicum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1