Chemical application improves stress resilience in plants.

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Plant Molecular Biology Pub Date : 2025-03-19 DOI:10.1007/s11103-025-01566-w
Khurram Bashir, Daisuke Todaka, Kaori Sako, Minoru Ueda, Farhan Aziz, Motoaki Seki
{"title":"Chemical application improves stress resilience in plants.","authors":"Khurram Bashir, Daisuke Todaka, Kaori Sako, Minoru Ueda, Farhan Aziz, Motoaki Seki","doi":"10.1007/s11103-025-01566-w","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, abiotic stresses, including droughts, floods, high temperatures, and salinity, have become increasingly frequent and severe. These stresses significantly hinder crop yields and product quality, posing substantial challenges to sustainable agriculture and global food security. Simultaneously, the rapidly growing global population exacerbates the need to enhance crop production under worsening environmental conditions. Consequently, the development of effective strategies to strengthen the resilience of crop plants against high temperatures, water scarcity, and extreme environmental conditions is critical for mitigating the impacts of abiotic stress. Plants respond to these environmental challenges by reprogramming their transcriptome and metabolome. Common strategies for developing stress-tolerant plants include screening germplasm, generating transgenic crop plants, and employing genome editing techniques. Recently, chemical treatment has emerged as a promising approach to enhance abiotic stress tolerance in crops. This technique involves the application of exogenous chemical compounds that induce molecular and physiological changes, thereby providing a protective shield against abiotic stress. Forward and reverse genetic approaches have facilitated the identification of chemicals capable of modulating plant responses to abiotic stresses. These priming agents function as epigenetic regulators, agonists, or antagonists, playing essential roles in regulating stomatal closure to conserve water, managing cellular signaling through reactive oxygen species and metabolites to sustain plant growth, and activating gluconeogenesis to enhance cellular metabolism. This review summarizes recent advancements in the field of chemical priming and explores strategies to improve stress tolerance and crop productivity, thereby contributing to the enhancement of global food security.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 2","pages":"47"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11922999/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-025-01566-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, abiotic stresses, including droughts, floods, high temperatures, and salinity, have become increasingly frequent and severe. These stresses significantly hinder crop yields and product quality, posing substantial challenges to sustainable agriculture and global food security. Simultaneously, the rapidly growing global population exacerbates the need to enhance crop production under worsening environmental conditions. Consequently, the development of effective strategies to strengthen the resilience of crop plants against high temperatures, water scarcity, and extreme environmental conditions is critical for mitigating the impacts of abiotic stress. Plants respond to these environmental challenges by reprogramming their transcriptome and metabolome. Common strategies for developing stress-tolerant plants include screening germplasm, generating transgenic crop plants, and employing genome editing techniques. Recently, chemical treatment has emerged as a promising approach to enhance abiotic stress tolerance in crops. This technique involves the application of exogenous chemical compounds that induce molecular and physiological changes, thereby providing a protective shield against abiotic stress. Forward and reverse genetic approaches have facilitated the identification of chemicals capable of modulating plant responses to abiotic stresses. These priming agents function as epigenetic regulators, agonists, or antagonists, playing essential roles in regulating stomatal closure to conserve water, managing cellular signaling through reactive oxygen species and metabolites to sustain plant growth, and activating gluconeogenesis to enhance cellular metabolism. This review summarizes recent advancements in the field of chemical priming and explores strategies to improve stress tolerance and crop productivity, thereby contributing to the enhancement of global food security.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Molecular Biology
Plant Molecular Biology 生物-生化与分子生物学
自引率
2.00%
发文量
95
审稿时长
1.4 months
期刊介绍: Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.
期刊最新文献
The Arabidopsis F-box protein FBS associated with the helix-loop-helix transcription factor FAMA involved in stomatal immunity. Chemical application improves stress resilience in plants. Chemically-induced cellular stress signals are transmitted to alternative splicing via UsnRNA levels to alter gene expression in Arabidopsis thaliana. A glycogen synthase kinase-3 gene enhances grain yield heterosis in semi-dwarf rapeseed. Light regulates seed dormancy through FHY3-mediated activation of ACC OXIDASE 1 in Arabidopsis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1