{"title":"Molecular advances in research and applications of male sterility systems in tomato.","authors":"Srija Priyadarsini, Saurabh Singh, Alok Nandi","doi":"10.1016/j.plaphy.2025.109503","DOIUrl":null,"url":null,"abstract":"<p><p>Tomato, belonging to the nightshade family, is globally considered as a model system for classical and molecular genetics, genomics, and reproductive developmental studies. In the current scenario of climate change, hybrid development is among the crucial elements in the genetic improvement of crop plants. The phenomenon of male sterility is a viable approach for ensuring hybrid seed purity and reducing the cost of hybrid seed production. This review aims to shed light on the use of neoteric genomics and genome editing tools in understanding the genetics and molecular regulation of male sterility in tomato. Plant male gametophyte development is highly susceptible to environmental stress. Abnormalities at any stage of male reproductive development, such as premature or delayed tapetal cell degradation triggered by oxidative stress and programmed cell death (PCD) leads to male sterility in tomato. In tomato, more than 55 sporogenous, structural, and functional male sterile mutants, which are mainly under the control of recessive nuclear genes, have been reported. Recently, the role of open reading frames (ORFs) in governing cytoplasmic male sterility in tomato has also been documented. This review highlights the genetic and genomic progress in the investigation of underlying molecular pathways and practical application of potential male sterile mutants in tomato breeding. The applications and future prospects of genome engineering with CRISPR/Cas9 and mitoTALEN in the generation of novel male sterile systems to expedite tomato breeding is discussed.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109503"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2025.109503","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Tomato, belonging to the nightshade family, is globally considered as a model system for classical and molecular genetics, genomics, and reproductive developmental studies. In the current scenario of climate change, hybrid development is among the crucial elements in the genetic improvement of crop plants. The phenomenon of male sterility is a viable approach for ensuring hybrid seed purity and reducing the cost of hybrid seed production. This review aims to shed light on the use of neoteric genomics and genome editing tools in understanding the genetics and molecular regulation of male sterility in tomato. Plant male gametophyte development is highly susceptible to environmental stress. Abnormalities at any stage of male reproductive development, such as premature or delayed tapetal cell degradation triggered by oxidative stress and programmed cell death (PCD) leads to male sterility in tomato. In tomato, more than 55 sporogenous, structural, and functional male sterile mutants, which are mainly under the control of recessive nuclear genes, have been reported. Recently, the role of open reading frames (ORFs) in governing cytoplasmic male sterility in tomato has also been documented. This review highlights the genetic and genomic progress in the investigation of underlying molecular pathways and practical application of potential male sterile mutants in tomato breeding. The applications and future prospects of genome engineering with CRISPR/Cas9 and mitoTALEN in the generation of novel male sterile systems to expedite tomato breeding is discussed.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.