ZmSIDP1, a DUF1644 gene from the halophyte Zoysia matrella, positively regulates salt tolerance in rice.

IF 6.1 2区 生物学 Q1 PLANT SCIENCES Plant Physiology and Biochemistry Pub Date : 2025-01-13 DOI:10.1016/j.plaphy.2025.109505
Xiaohui Li, Yu Chen, Haoran Wang, Jingya Xu, Ling Zhang, Jianxiu Liu, Jianjian Li
{"title":"ZmSIDP1, a DUF1644 gene from the halophyte Zoysia matrella, positively regulates salt tolerance in rice.","authors":"Xiaohui Li, Yu Chen, Haoran Wang, Jingya Xu, Ling Zhang, Jianxiu Liu, Jianjian Li","doi":"10.1016/j.plaphy.2025.109505","DOIUrl":null,"url":null,"abstract":"<p><p>As a detrimental abiotic stressor, salinity affects plant growth and yield. Domain of unknown function 1644 (DUF1644) is a large plant-specific DUF protein family that is predicted to be involved in abiotic stress responses in plants. However, the biological functions of DUF1644 genes in plants remain largely unexplored, especially in halophytes. Here, we investigated the function of the DUF1644 gene, ZmSIDP1, from the halophyte Zoysia matrella. ZmSIDP1 could enhance the salt tolerance of yeast. Furthermore, the heterologous transformation of the ZmSIDP1 gene in rice demonstrated that transgenic rice plants exhibited better growth under NaCl treatment. The Na <sup>+</sup> content was lower in ZmSIDP1 transgenic rice than in wild-type rice under salt stress. ZmSIDP1 transgenic rice showed stronger resistance to oxidative stress induced by salt stress. Further investigation indicated that ZmSIDP1 could interact with an HD-Zip transcription factor, ZmROC1. These results suggest that the ZmSIDP1 gene from the halophyte Z. matrella can positively regulate salt resistance in rice, laying a foundation for the application of salt tolerance genes from halophytes to enhance salt tolerance in rice.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109505"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2025.109505","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

As a detrimental abiotic stressor, salinity affects plant growth and yield. Domain of unknown function 1644 (DUF1644) is a large plant-specific DUF protein family that is predicted to be involved in abiotic stress responses in plants. However, the biological functions of DUF1644 genes in plants remain largely unexplored, especially in halophytes. Here, we investigated the function of the DUF1644 gene, ZmSIDP1, from the halophyte Zoysia matrella. ZmSIDP1 could enhance the salt tolerance of yeast. Furthermore, the heterologous transformation of the ZmSIDP1 gene in rice demonstrated that transgenic rice plants exhibited better growth under NaCl treatment. The Na + content was lower in ZmSIDP1 transgenic rice than in wild-type rice under salt stress. ZmSIDP1 transgenic rice showed stronger resistance to oxidative stress induced by salt stress. Further investigation indicated that ZmSIDP1 could interact with an HD-Zip transcription factor, ZmROC1. These results suggest that the ZmSIDP1 gene from the halophyte Z. matrella can positively regulate salt resistance in rice, laying a foundation for the application of salt tolerance genes from halophytes to enhance salt tolerance in rice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
期刊最新文献
Identification of the bHLH gene family and functional analysis of ChMYC2 in drought stress of Cerasus humilis. Gene expression and mucilage adaptations to salinity in germination of extreme halophyte Schrenkiella parvula seeds. Integrated GWAS, BSA-seq, and RNA-seq analyses to identify candidate genes associated with male fertility trait in peach. Comprehensive analysis of small RNA, transcriptome, and degradome sequencing: Mapping the miRNA-gene regulatory network for the development of sweet potato tuber roots. Polyethylene nanoplastics affected morphological, physiological, and molecular indices in tomato (Solanum lycopersicum L.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1