An ensemble machine learning-based performance evaluation identifies top In-Silico pathogenicity prediction methods that best classify driver mutations in cancer.

IF 4 3区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Biodata Mining Pub Date : 2025-01-20 DOI:10.1186/s13040-024-00420-x
Subrata Das, Vatsal Patel, Shouvik Chakravarty, Arnab Ghosh, Anirban Mukhopadhyay, Nidhan K Biswas
{"title":"An ensemble machine learning-based performance evaluation identifies top In-Silico pathogenicity prediction methods that best classify driver mutations in cancer.","authors":"Subrata Das, Vatsal Patel, Shouvik Chakravarty, Arnab Ghosh, Anirban Mukhopadhyay, Nidhan K Biswas","doi":"10.1186/s13040-024-00420-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>Accurate identification and prioritization of driver-mutations in cancer is critical for effective patient management. Despite the presence of numerous bioinformatic algorithms for estimating mutation pathogenicity, there is significant variation in their assessments. This inconsistency is evident even for well-established cancer driver mutations. This study aims to develop an ensemble machine learning approach to evaluate the performance (rank) of pathogenic and conservation scoring algorithms (PCSAs) based on their ability to distinguish pathogenic driver mutations from benign passenger (non-driver) mutations in head and neck squamous cell carcinoma (HNSC).</p><p><strong>Methods: </strong>The study used a dataset from 502 HNSC patients, classifying mutations based on 299 known high-confidence cancer driver genes. Missense somatic mutations in driver genes were treated as driver mutations, while non-driver mutations were randomly selected from other genes. Each mutation was annotated with 41 PCSAs. Three machine learning algorithms-logistic regression, random forest, and support vector machine-along with recursive feature elimination, were used to rank these PCSAs. The final ranking of the PCSAs was determined using rank-average-sort and rank-sum-sort methods.</p><p><strong>Results: </strong>The random forest algorithm emerged as the top performer among the three tested ML algorithms, with an AUC-ROC of 0.89, compared to 0.83 for the other two, in distinguishing pathogenic driver mutations from benign passenger mutations using all 41 PCSAs. The top 11 PCSAs were selected based on the first quintile cut-off from the final rank-sum distribution. Classifiers built using these top 11 PCSAs (DEOGEN2, Integrated_fitCons, MVP, etc.) demonstrated significantly higher performance (p-value < 2.22e-16) compared to those using the remaining 30 PCSAs across all three ML algorithms, in separating pathogenic driver from benign passenger mutations. The top PCSAs demonstrated strong performance on a validation cohort including independent HNSC and other cancer types: breast, lung, and colorectal - reflecting its consistency, robustness and generalizability.</p><p><strong>Conclusions: </strong>The ensemble machine learning approach effectively evaluates the performance of PCSAs based on their ability to differentiate pathogenic drivers from benign passenger mutations in HNSC and other cancer types. Notably, some well-known PCSAs performed poorly, underscoring the importance of data-driven selection over relying solely on popularity.</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"18 1","pages":"7"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-024-00420-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objective: Accurate identification and prioritization of driver-mutations in cancer is critical for effective patient management. Despite the presence of numerous bioinformatic algorithms for estimating mutation pathogenicity, there is significant variation in their assessments. This inconsistency is evident even for well-established cancer driver mutations. This study aims to develop an ensemble machine learning approach to evaluate the performance (rank) of pathogenic and conservation scoring algorithms (PCSAs) based on their ability to distinguish pathogenic driver mutations from benign passenger (non-driver) mutations in head and neck squamous cell carcinoma (HNSC).

Methods: The study used a dataset from 502 HNSC patients, classifying mutations based on 299 known high-confidence cancer driver genes. Missense somatic mutations in driver genes were treated as driver mutations, while non-driver mutations were randomly selected from other genes. Each mutation was annotated with 41 PCSAs. Three machine learning algorithms-logistic regression, random forest, and support vector machine-along with recursive feature elimination, were used to rank these PCSAs. The final ranking of the PCSAs was determined using rank-average-sort and rank-sum-sort methods.

Results: The random forest algorithm emerged as the top performer among the three tested ML algorithms, with an AUC-ROC of 0.89, compared to 0.83 for the other two, in distinguishing pathogenic driver mutations from benign passenger mutations using all 41 PCSAs. The top 11 PCSAs were selected based on the first quintile cut-off from the final rank-sum distribution. Classifiers built using these top 11 PCSAs (DEOGEN2, Integrated_fitCons, MVP, etc.) demonstrated significantly higher performance (p-value < 2.22e-16) compared to those using the remaining 30 PCSAs across all three ML algorithms, in separating pathogenic driver from benign passenger mutations. The top PCSAs demonstrated strong performance on a validation cohort including independent HNSC and other cancer types: breast, lung, and colorectal - reflecting its consistency, robustness and generalizability.

Conclusions: The ensemble machine learning approach effectively evaluates the performance of PCSAs based on their ability to differentiate pathogenic drivers from benign passenger mutations in HNSC and other cancer types. Notably, some well-known PCSAs performed poorly, underscoring the importance of data-driven selection over relying solely on popularity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biodata Mining
Biodata Mining MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
7.90
自引率
0.00%
发文量
28
审稿时长
23 weeks
期刊介绍: BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data. Topical areas include, but are not limited to: -Development, evaluation, and application of novel data mining and machine learning algorithms. -Adaptation, evaluation, and application of traditional data mining and machine learning algorithms. -Open-source software for the application of data mining and machine learning algorithms. -Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies. -Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.
期刊最新文献
An ensemble machine learning-based performance evaluation identifies top In-Silico pathogenicity prediction methods that best classify driver mutations in cancer. Correction: Predictive modeling of ALS progression: an XGBoost approach using clinical features. Enriched phenotypes in rare variant carriers suggest pathogenic mechanisms in rare disease patients. MultiChem: predicting chemical properties using multi-view graph attention network. Genome-wide association studies are enriched for interacting genes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1