Complementary Strategies to Identify Differentially Expressed Genes in the Choroid Plexus of Patients with Progressive Multiple Sclerosis.

IF 2.7 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Neuroinformatics Pub Date : 2025-01-21 DOI:10.1007/s12021-024-09713-2
Aline Beatriz Mello Rodrigues, Fabio Passetti, Ana Carolina Ramos Guimarães
{"title":"Complementary Strategies to Identify Differentially Expressed Genes in the Choroid Plexus of Patients with Progressive Multiple Sclerosis.","authors":"Aline Beatriz Mello Rodrigues, Fabio Passetti, Ana Carolina Ramos Guimarães","doi":"10.1007/s12021-024-09713-2","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple sclerosis (MS) is a neurological disease causing myelin and axon damage through inflammatory and autoimmune processes. Despite affecting millions worldwide, understanding its genetic pathways remains limited. The choroid plexus (ChP) has been studied in neurodegenerative processes and diseases like MS due to its dysregulation, yet its role in MS pathophysiology remains unclear. Our work re-evaluates the ChP transcriptome in progressive MS patients and compares gene expression profiles using diverse methodological strategies. Samples from patient and healthy control RNASeq sequencing of brain tissue from post-mortem patients (GEO: GSE137619) were used. After an evaluation and quality control of these data, they had their transcripts mapped and quantified against the reference transcriptome GRCh38/hg38 of Homo sapiens using three strategies to identify differentially expressed genes in progressive MS patients. Functional analysis of genes revealed their involvement in immune processes, cell adhesion and migration, hormonal actions, amino acid transport, chemokines, metals, and signaling pathways. Our findings can offer valuable insights for progressive MS therapies, suggesting specific genes influence immune cell recruitment and potential ChP microenvironment changes. Combining complementary approaches maximizes literature coverage, facilitating a deeper understanding of the biological context in progressive MS.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"23 2","pages":"10"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12021-024-09713-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple sclerosis (MS) is a neurological disease causing myelin and axon damage through inflammatory and autoimmune processes. Despite affecting millions worldwide, understanding its genetic pathways remains limited. The choroid plexus (ChP) has been studied in neurodegenerative processes and diseases like MS due to its dysregulation, yet its role in MS pathophysiology remains unclear. Our work re-evaluates the ChP transcriptome in progressive MS patients and compares gene expression profiles using diverse methodological strategies. Samples from patient and healthy control RNASeq sequencing of brain tissue from post-mortem patients (GEO: GSE137619) were used. After an evaluation and quality control of these data, they had their transcripts mapped and quantified against the reference transcriptome GRCh38/hg38 of Homo sapiens using three strategies to identify differentially expressed genes in progressive MS patients. Functional analysis of genes revealed their involvement in immune processes, cell adhesion and migration, hormonal actions, amino acid transport, chemokines, metals, and signaling pathways. Our findings can offer valuable insights for progressive MS therapies, suggesting specific genes influence immune cell recruitment and potential ChP microenvironment changes. Combining complementary approaches maximizes literature coverage, facilitating a deeper understanding of the biological context in progressive MS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鉴定进行性多发性硬化症患者脉络膜丛差异表达基因的补充策略。
多发性硬化症(MS)是一种神经系统疾病,通过炎症和自身免疫过程引起髓磷脂和轴突损伤。尽管影响着全世界数百万人,但对其遗传途径的了解仍然有限。脉络膜丛(ChP)在神经退行性过程和多发性硬化症等疾病中因其失调而被研究,但其在多发性硬化症病理生理中的作用尚不清楚。我们的工作重新评估进展性MS患者的ChP转录组,并使用不同的方法学策略比较基因表达谱。使用患者和健康对照的死后患者脑组织RNASeq测序样本(GEO: GSE137619)。在对这些数据进行评估和质量控制后,他们使用三种策略对其转录本进行了定位和量化,以对照智人的参考转录组GRCh38/hg38,以识别进展性MS患者的差异表达基因。基因的功能分析揭示了它们参与免疫过程、细胞粘附和迁移、激素作用、氨基酸运输、趋化因子、金属和信号通路。我们的研究结果可以为渐进式MS治疗提供有价值的见解,表明特定基因影响免疫细胞募集和潜在的ChP微环境变化。结合互补的方法最大限度地扩大了文献覆盖,促进了对进展性多发性硬化症的生物学背景的更深层次的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuroinformatics
Neuroinformatics 医学-计算机:跨学科应用
CiteScore
6.00
自引率
6.70%
发文量
54
审稿时长
3 months
期刊介绍: Neuroinformatics publishes original articles and reviews with an emphasis on data structure and software tools related to analysis, modeling, integration, and sharing in all areas of neuroscience research. The editors particularly invite contributions on: (1) Theory and methodology, including discussions on ontologies, modeling approaches, database design, and meta-analyses; (2) Descriptions of developed databases and software tools, and of the methods for their distribution; (3) Relevant experimental results, such as reports accompanie by the release of massive data sets; (4) Computational simulations of models integrating and organizing complex data; and (5) Neuroengineering approaches, including hardware, robotics, and information theory studies.
期刊最新文献
Determination of the Time-frequency Features for Impulse Components in EEG Signals. Blood Flow Velocity Analysis in Cerebral Perforating Arteries on 7T 2D Phase Contrast MRI with an Open-Source Software Tool (SELMA). CDCG-UNet: Chaotic Optimization Assisted Brain Tumor Segmentation Based on Dilated Channel Gate Attention U-Net Model. Complementary Strategies to Identify Differentially Expressed Genes in the Choroid Plexus of Patients with Progressive Multiple Sclerosis. Predicting Paediatric Brain Disorders from MRI Images Using Advanced Deep Learning Techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1