{"title":"Overcoming Neuroanatomical Mapping and Computational Barriers in Human Brain Synaptic Architecture.","authors":"Rahul Kumar, Ethan Waisberg, Joshua Ong, Phani Paladugu, Dylan Amiri, Ram Jagadeesan","doi":"10.1007/s12021-025-09715-8","DOIUrl":null,"url":null,"abstract":"<p><p>In this Matters Arising, we critically examine the data processing and computational challenges highlighted under the high-resolution, three-dimensional reconstruction of human cortical tissue by Shapson-Coe et al. While the study represents a technical milestone in connectomics, involving a 1.4-petabyte dataset derived from mapping a cubic millimeter of temporal cortex, the findings also reveal the substantial obstacles inherent in scaling such approaches to the entire human brain. Beyond the application of artificial intelligence (AI) for segmentation and synapse detection, the study underscores the immense complexity of data acquisition, cleaning, alignment, and visualization at this scale. This article contextualizes these challenges by comparing the computational and infrastructural requirements of the Shapson-Coe work to other large-scale neuroscience initiatives, such as the fruit fly brain atlas, and explores emerging technologies like quantum computing and neuromorphic hardware as potential solutions. Additionally, we discuss the ethical and logistical implications of managing zettabyte-scale datasets and emphasize the necessity of international collaboration to achieve the ambitious goal of mapping the human connectome. By critically addressing these challenges and potential solutions, this article aims to guide future advancements in the field of connectomics and their transformative applications in neuroscience, artificial intelligence, and medicine.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"23 2","pages":"22"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12021-025-09715-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this Matters Arising, we critically examine the data processing and computational challenges highlighted under the high-resolution, three-dimensional reconstruction of human cortical tissue by Shapson-Coe et al. While the study represents a technical milestone in connectomics, involving a 1.4-petabyte dataset derived from mapping a cubic millimeter of temporal cortex, the findings also reveal the substantial obstacles inherent in scaling such approaches to the entire human brain. Beyond the application of artificial intelligence (AI) for segmentation and synapse detection, the study underscores the immense complexity of data acquisition, cleaning, alignment, and visualization at this scale. This article contextualizes these challenges by comparing the computational and infrastructural requirements of the Shapson-Coe work to other large-scale neuroscience initiatives, such as the fruit fly brain atlas, and explores emerging technologies like quantum computing and neuromorphic hardware as potential solutions. Additionally, we discuss the ethical and logistical implications of managing zettabyte-scale datasets and emphasize the necessity of international collaboration to achieve the ambitious goal of mapping the human connectome. By critically addressing these challenges and potential solutions, this article aims to guide future advancements in the field of connectomics and their transformative applications in neuroscience, artificial intelligence, and medicine.
期刊介绍:
Neuroinformatics publishes original articles and reviews with an emphasis on data structure and software tools related to analysis, modeling, integration, and sharing in all areas of neuroscience research. The editors particularly invite contributions on: (1) Theory and methodology, including discussions on ontologies, modeling approaches, database design, and meta-analyses; (2) Descriptions of developed databases and software tools, and of the methods for their distribution; (3) Relevant experimental results, such as reports accompanie by the release of massive data sets; (4) Computational simulations of models integrating and organizing complex data; and (5) Neuroengineering approaches, including hardware, robotics, and information theory studies.