Overcoming Neuroanatomical Mapping and Computational Barriers in Human Brain Synaptic Architecture.

IF 2.7 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Neuroinformatics Pub Date : 2025-02-25 DOI:10.1007/s12021-025-09715-8
Rahul Kumar, Ethan Waisberg, Joshua Ong, Phani Paladugu, Dylan Amiri, Ram Jagadeesan
{"title":"Overcoming Neuroanatomical Mapping and Computational Barriers in Human Brain Synaptic Architecture.","authors":"Rahul Kumar, Ethan Waisberg, Joshua Ong, Phani Paladugu, Dylan Amiri, Ram Jagadeesan","doi":"10.1007/s12021-025-09715-8","DOIUrl":null,"url":null,"abstract":"<p><p>In this Matters Arising, we critically examine the data processing and computational challenges highlighted under the high-resolution, three-dimensional reconstruction of human cortical tissue by Shapson-Coe et al. While the study represents a technical milestone in connectomics, involving a 1.4-petabyte dataset derived from mapping a cubic millimeter of temporal cortex, the findings also reveal the substantial obstacles inherent in scaling such approaches to the entire human brain. Beyond the application of artificial intelligence (AI) for segmentation and synapse detection, the study underscores the immense complexity of data acquisition, cleaning, alignment, and visualization at this scale. This article contextualizes these challenges by comparing the computational and infrastructural requirements of the Shapson-Coe work to other large-scale neuroscience initiatives, such as the fruit fly brain atlas, and explores emerging technologies like quantum computing and neuromorphic hardware as potential solutions. Additionally, we discuss the ethical and logistical implications of managing zettabyte-scale datasets and emphasize the necessity of international collaboration to achieve the ambitious goal of mapping the human connectome. By critically addressing these challenges and potential solutions, this article aims to guide future advancements in the field of connectomics and their transformative applications in neuroscience, artificial intelligence, and medicine.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"23 2","pages":"22"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12021-025-09715-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this Matters Arising, we critically examine the data processing and computational challenges highlighted under the high-resolution, three-dimensional reconstruction of human cortical tissue by Shapson-Coe et al. While the study represents a technical milestone in connectomics, involving a 1.4-petabyte dataset derived from mapping a cubic millimeter of temporal cortex, the findings also reveal the substantial obstacles inherent in scaling such approaches to the entire human brain. Beyond the application of artificial intelligence (AI) for segmentation and synapse detection, the study underscores the immense complexity of data acquisition, cleaning, alignment, and visualization at this scale. This article contextualizes these challenges by comparing the computational and infrastructural requirements of the Shapson-Coe work to other large-scale neuroscience initiatives, such as the fruit fly brain atlas, and explores emerging technologies like quantum computing and neuromorphic hardware as potential solutions. Additionally, we discuss the ethical and logistical implications of managing zettabyte-scale datasets and emphasize the necessity of international collaboration to achieve the ambitious goal of mapping the human connectome. By critically addressing these challenges and potential solutions, this article aims to guide future advancements in the field of connectomics and their transformative applications in neuroscience, artificial intelligence, and medicine.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在本期 "新出现的问题"(Matters Arising)中,我们将对 Shapson-Coe 等人高分辨率、三维重建人类大脑皮层组织所凸显的数据处理和计算挑战进行批判性研究。这项研究是连接组学领域的一个技术里程碑,它涉及 1.4 Petabyte 数据集,这些数据集来自对一立方毫米颞叶皮层的测绘,研究结果还揭示了将此类方法扩展到整个人类大脑所固有的巨大障碍。除了应用人工智能(AI)进行分割和突触检测外,该研究还强调了这种规模的数据采集、清理、配准和可视化的巨大复杂性。本文通过将 Shapson-Coe 工作的计算和基础设施要求与其他大规模神经科学计划(如果蝇脑图谱)进行比较,并探索量子计算和神经形态硬件等新兴技术作为潜在的解决方案,来说明这些挑战的来龙去脉。此外,我们还讨论了管理 zettabyte 级数据集所涉及的伦理和后勤问题,并强调了开展国际合作以实现绘制人类连接组图谱这一宏伟目标的必要性。通过批判性地探讨这些挑战和潜在的解决方案,本文旨在指导连接组学领域未来的发展及其在神经科学、人工智能和医学领域的变革性应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuroinformatics
Neuroinformatics 医学-计算机:跨学科应用
CiteScore
6.00
自引率
6.70%
发文量
54
审稿时长
3 months
期刊介绍: Neuroinformatics publishes original articles and reviews with an emphasis on data structure and software tools related to analysis, modeling, integration, and sharing in all areas of neuroscience research. The editors particularly invite contributions on: (1) Theory and methodology, including discussions on ontologies, modeling approaches, database design, and meta-analyses; (2) Descriptions of developed databases and software tools, and of the methods for their distribution; (3) Relevant experimental results, such as reports accompanie by the release of massive data sets; (4) Computational simulations of models integrating and organizing complex data; and (5) Neuroengineering approaches, including hardware, robotics, and information theory studies.
期刊最新文献
Overcoming Neuroanatomical Mapping and Computational Barriers in Human Brain Synaptic Architecture. Unraveling Integration-Segregation Imbalances in Schizophrenia Through Topological High-Order Functional Connectivity. FrAMBI: A Software Framework for Auditory Modeling Based on Bayesian Inference. Generalized Coupled Matrix Tensor Factorization Method Based on Normalized Mutual Information for Simultaneous EEG-fMRI Data Analysis. Cardiac Heterogeneity Prediction by Cardio-Neural Network Simulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1