Nonlinear feature selection for support vector quantile regression.

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Networks Pub Date : 2025-01-13 DOI:10.1016/j.neunet.2025.107136
Ya-Fen Ye, Jie Wang, Wei-Jie Chen
{"title":"Nonlinear feature selection for support vector quantile regression.","authors":"Ya-Fen Ye, Jie Wang, Wei-Jie Chen","doi":"10.1016/j.neunet.2025.107136","DOIUrl":null,"url":null,"abstract":"<p><p>This paper discusses the nuanced domain of nonlinear feature selection in heterogeneous systems. To address this challenge, we present a sparsity-driven methodology, namely nonlinear feature selection for support vector quantile regression (NFS-SVQR). This method includes a binary-diagonal matrix, featuring 0 and 1 elements, to address the complexities of feature selection within intricate nonlinear systems. Moreover, NFS-SVQR integrates a quantile parameter to effectively address the intrinsic challenges of heterogeneity within nonlinear feature selection processes. Consequently, NFS-SVQR excels not only in precisely identifying representative features but also in comprehensively capturing heterogeneous information within high-dimensional datasets. Through feature selection experiments the enhanced performance of NFS-SVQR in capturing heterogeneous information and selecting representative features is demonstrated.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"185 ","pages":"107136"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2025.107136","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper discusses the nuanced domain of nonlinear feature selection in heterogeneous systems. To address this challenge, we present a sparsity-driven methodology, namely nonlinear feature selection for support vector quantile regression (NFS-SVQR). This method includes a binary-diagonal matrix, featuring 0 and 1 elements, to address the complexities of feature selection within intricate nonlinear systems. Moreover, NFS-SVQR integrates a quantile parameter to effectively address the intrinsic challenges of heterogeneity within nonlinear feature selection processes. Consequently, NFS-SVQR excels not only in precisely identifying representative features but also in comprehensively capturing heterogeneous information within high-dimensional datasets. Through feature selection experiments the enhanced performance of NFS-SVQR in capturing heterogeneous information and selecting representative features is demonstrated.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支持向量分位数回归的非线性特征选择。
本文讨论了异构系统中非线性特征选择的精细领域。为了解决这一挑战,我们提出了一种稀疏驱动的方法,即非线性特征选择支持向量分位数回归(NFS-SVQR)。该方法包括一个以0和1元素为特征的二元对角矩阵,以解决复杂非线性系统中特征选择的复杂性。此外,NFS-SVQR集成了一个分位数参数,有效地解决了非线性特征选择过程中异质性的内在挑战。因此,NFS-SVQR不仅在精确识别代表性特征方面表现出色,而且在全面捕获高维数据集中的异构信息方面也表现出色。通过特征选择实验,验证了NFS-SVQR在捕获异构信息和选择代表性特征方面的增强性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
期刊最新文献
Estimating global phase synchronization by quantifying multivariate mutual information and detecting network structure. Event-based adaptive fixed-time optimal control for saturated fault-tolerant nonlinear multiagent systems via reinforcement learning algorithm. Lie group convolution neural networks with scale-rotation equivariance. Multi-hop interpretable meta learning for few-shot temporal knowledge graph completion. An object detection-based model for automated screening of stem-cells senescence during drug screening.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1