Along He, Yanlin Wu, Zhihong Wang, Tao Li, Huazhu Fu
{"title":"DVPT: Dynamic Visual Prompt Tuning of large pre-trained models for medical image analysis.","authors":"Along He, Yanlin Wu, Zhihong Wang, Tao Li, Huazhu Fu","doi":"10.1016/j.neunet.2025.107168","DOIUrl":null,"url":null,"abstract":"<p><p>Pre-training and fine-tuning have become popular due to the rich representations embedded in large pre-trained models, which can be leveraged for downstream medical tasks. However, existing methods typically either fine-tune all parameters or only task-specific layers of pre-trained models, overlooking the variability in input medical images. As a result, these approaches may lack efficiency or effectiveness. In this study, our goal is to explore parameter-efficient fine-tuning (PEFT) for medical image analysis. To address this challenge, we introduce a novel method called Dynamic Visual Prompt Tuning (DVPT). It can extract knowledge beneficial to downstream tasks from large models with only a few trainable parameters. First, the frozen features are transformed by a lightweight bottleneck layer to learn the domain-specific distribution of downstream medical tasks. Then, a few learnable visual prompts are employed as dynamic queries to conduct cross-attention with the transformed features, aiming to acquire sample-specific features. This DVPT module can be shared across different Transformer layers, further reducing the number of trainable parameters. We conduct extensive experiments with various pre-trained models on medical classification and segmentation tasks. We find that this PEFT method not only efficiently adapts pre-trained models to the medical domain but also enhances data efficiency with limited labeled data. For example, with only 0.5% additional trainable parameters, our method not only outperforms state-of-the-art PEFT methods but also surpasses full fine-tuning by more than 2.20% in Kappa score on the medical classification task. It can save up to 60% of labeled data and 99% of storage cost of ViT-B/16.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"185 ","pages":"107168"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2025.107168","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Pre-training and fine-tuning have become popular due to the rich representations embedded in large pre-trained models, which can be leveraged for downstream medical tasks. However, existing methods typically either fine-tune all parameters or only task-specific layers of pre-trained models, overlooking the variability in input medical images. As a result, these approaches may lack efficiency or effectiveness. In this study, our goal is to explore parameter-efficient fine-tuning (PEFT) for medical image analysis. To address this challenge, we introduce a novel method called Dynamic Visual Prompt Tuning (DVPT). It can extract knowledge beneficial to downstream tasks from large models with only a few trainable parameters. First, the frozen features are transformed by a lightweight bottleneck layer to learn the domain-specific distribution of downstream medical tasks. Then, a few learnable visual prompts are employed as dynamic queries to conduct cross-attention with the transformed features, aiming to acquire sample-specific features. This DVPT module can be shared across different Transformer layers, further reducing the number of trainable parameters. We conduct extensive experiments with various pre-trained models on medical classification and segmentation tasks. We find that this PEFT method not only efficiently adapts pre-trained models to the medical domain but also enhances data efficiency with limited labeled data. For example, with only 0.5% additional trainable parameters, our method not only outperforms state-of-the-art PEFT methods but also surpasses full fine-tuning by more than 2.20% in Kappa score on the medical classification task. It can save up to 60% of labeled data and 99% of storage cost of ViT-B/16.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.