Fanyong Yan , Dongyang Liu , Baojuan Zhao , Yu Wang , Yidi Wang , Shangpeng Yang , Shanshan Li
{"title":"Intervening with nanozymes in aging-related diseases: Strategies for restoring mitochondrial function","authors":"Fanyong Yan , Dongyang Liu , Baojuan Zhao , Yu Wang , Yidi Wang , Shangpeng Yang , Shanshan Li","doi":"10.1016/j.bioadv.2025.214193","DOIUrl":null,"url":null,"abstract":"<div><div>The decline in mitochondrial function has been identified as one of the central pathological mechanisms underlying a variety of aging-related diseases. Nanozymes are nanomaterials with intrinsic enzyme-like properties and are important alternatives to natural enzymes. As emerging biocatalysts, nanozymes exhibit significant potential in mimicking the activity of natural enzymes, enhancing mitochondrial function, and offering novel therapeutic strategies for aging-related conditions. This review provides an overview of various approaches to modulate the catalytic activity of nanozymes, considering factors such as particle size, shape, surface modifications, and constituent elements. It then examines the role of nanozymes in mitigating aging-related diseases by preserving mitochondrial health, with a particular focus on their ability to regulate three critical aspects: mitochondrial energy metabolism, quality control, and antioxidant capacity. By improving mitochondrial energy generation, supporting mitochondrial integrity, and eliminating excess reactive oxygen species (ROS), nanozymes offer new therapeutic possibilities for neurodegenerative diseases, bone-related disorders, and diabetes. Finally, this article discusses the major challenges faced in this field, including issues such as the scalability, biocompatibility, and targeting ability of nanozymes. It also emphasizes that future research should focus on enhancing clinical translation to ensure that nanozymes can play an effective role in practical therapeutic applications.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"169 ","pages":"Article 214193"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science & Engineering C-Materials for Biological Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772950825000202","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The decline in mitochondrial function has been identified as one of the central pathological mechanisms underlying a variety of aging-related diseases. Nanozymes are nanomaterials with intrinsic enzyme-like properties and are important alternatives to natural enzymes. As emerging biocatalysts, nanozymes exhibit significant potential in mimicking the activity of natural enzymes, enhancing mitochondrial function, and offering novel therapeutic strategies for aging-related conditions. This review provides an overview of various approaches to modulate the catalytic activity of nanozymes, considering factors such as particle size, shape, surface modifications, and constituent elements. It then examines the role of nanozymes in mitigating aging-related diseases by preserving mitochondrial health, with a particular focus on their ability to regulate three critical aspects: mitochondrial energy metabolism, quality control, and antioxidant capacity. By improving mitochondrial energy generation, supporting mitochondrial integrity, and eliminating excess reactive oxygen species (ROS), nanozymes offer new therapeutic possibilities for neurodegenerative diseases, bone-related disorders, and diabetes. Finally, this article discusses the major challenges faced in this field, including issues such as the scalability, biocompatibility, and targeting ability of nanozymes. It also emphasizes that future research should focus on enhancing clinical translation to ensure that nanozymes can play an effective role in practical therapeutic applications.
期刊介绍:
Biomaterials Advances, previously known as Materials Science and Engineering: C-Materials for Biological Applications (P-ISSN: 0928-4931, E-ISSN: 1873-0191). Includes topics at the interface of the biomedical sciences and materials engineering. These topics include:
• Bioinspired and biomimetic materials for medical applications
• Materials of biological origin for medical applications
• Materials for "active" medical applications
• Self-assembling and self-healing materials for medical applications
• "Smart" (i.e., stimulus-response) materials for medical applications
• Ceramic, metallic, polymeric, and composite materials for medical applications
• Materials for in vivo sensing
• Materials for in vivo imaging
• Materials for delivery of pharmacologic agents and vaccines
• Novel approaches for characterizing and modeling materials for medical applications
Manuscripts on biological topics without a materials science component, or manuscripts on materials science without biological applications, will not be considered for publication in Materials Science and Engineering C. New submissions are first assessed for language, scope and originality (plagiarism check) and can be desk rejected before review if they need English language improvements, are out of scope or present excessive duplication with published sources.
Biomaterials Advances sits within Elsevier''s biomaterials science portfolio alongside Biomaterials, Materials Today Bio and Biomaterials and Biosystems. As part of the broader Materials Today family, Biomaterials Advances offers authors rigorous peer review, rapid decisions, and high visibility. We look forward to receiving your submissions!