Intervening with nanozymes in aging-related diseases: Strategies for restoring mitochondrial function

IF 5.5 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS Materials Science & Engineering C-Materials for Biological Applications Pub Date : 2025-01-18 DOI:10.1016/j.bioadv.2025.214193
Fanyong Yan , Dongyang Liu , Baojuan Zhao , Yu Wang , Yidi Wang , Shangpeng Yang , Shanshan Li
{"title":"Intervening with nanozymes in aging-related diseases: Strategies for restoring mitochondrial function","authors":"Fanyong Yan ,&nbsp;Dongyang Liu ,&nbsp;Baojuan Zhao ,&nbsp;Yu Wang ,&nbsp;Yidi Wang ,&nbsp;Shangpeng Yang ,&nbsp;Shanshan Li","doi":"10.1016/j.bioadv.2025.214193","DOIUrl":null,"url":null,"abstract":"<div><div>The decline in mitochondrial function has been identified as one of the central pathological mechanisms underlying a variety of aging-related diseases. Nanozymes are nanomaterials with intrinsic enzyme-like properties and are important alternatives to natural enzymes. As emerging biocatalysts, nanozymes exhibit significant potential in mimicking the activity of natural enzymes, enhancing mitochondrial function, and offering novel therapeutic strategies for aging-related conditions. This review provides an overview of various approaches to modulate the catalytic activity of nanozymes, considering factors such as particle size, shape, surface modifications, and constituent elements. It then examines the role of nanozymes in mitigating aging-related diseases by preserving mitochondrial health, with a particular focus on their ability to regulate three critical aspects: mitochondrial energy metabolism, quality control, and antioxidant capacity. By improving mitochondrial energy generation, supporting mitochondrial integrity, and eliminating excess reactive oxygen species (ROS), nanozymes offer new therapeutic possibilities for neurodegenerative diseases, bone-related disorders, and diabetes. Finally, this article discusses the major challenges faced in this field, including issues such as the scalability, biocompatibility, and targeting ability of nanozymes. It also emphasizes that future research should focus on enhancing clinical translation to ensure that nanozymes can play an effective role in practical therapeutic applications.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"169 ","pages":"Article 214193"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science & Engineering C-Materials for Biological Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772950825000202","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The decline in mitochondrial function has been identified as one of the central pathological mechanisms underlying a variety of aging-related diseases. Nanozymes are nanomaterials with intrinsic enzyme-like properties and are important alternatives to natural enzymes. As emerging biocatalysts, nanozymes exhibit significant potential in mimicking the activity of natural enzymes, enhancing mitochondrial function, and offering novel therapeutic strategies for aging-related conditions. This review provides an overview of various approaches to modulate the catalytic activity of nanozymes, considering factors such as particle size, shape, surface modifications, and constituent elements. It then examines the role of nanozymes in mitigating aging-related diseases by preserving mitochondrial health, with a particular focus on their ability to regulate three critical aspects: mitochondrial energy metabolism, quality control, and antioxidant capacity. By improving mitochondrial energy generation, supporting mitochondrial integrity, and eliminating excess reactive oxygen species (ROS), nanozymes offer new therapeutic possibilities for neurodegenerative diseases, bone-related disorders, and diabetes. Finally, this article discusses the major challenges faced in this field, including issues such as the scalability, biocompatibility, and targeting ability of nanozymes. It also emphasizes that future research should focus on enhancing clinical translation to ensure that nanozymes can play an effective role in practical therapeutic applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米酶干预衰老相关疾病:恢复线粒体功能的策略
线粒体功能的下降已被确定为多种衰老相关疾病的核心病理机制之一。纳米酶是一种具有内在酶样特性的纳米材料,是天然酶的重要替代品。作为新兴的生物催化剂,纳米酶在模拟天然酶的活性、增强线粒体功能以及为衰老相关疾病提供新的治疗策略方面显示出巨大的潜力。本文综述了调节纳米酶催化活性的各种方法,考虑了诸如粒径、形状、表面修饰和组成元素等因素。然后研究纳米酶在通过保持线粒体健康来减轻衰老相关疾病中的作用,特别关注它们调节三个关键方面的能力:线粒体能量代谢、质量控制和抗氧化能力。通过改善线粒体能量生成、支持线粒体完整性和消除过量活性氧(ROS),纳米酶为神经退行性疾病、骨相关疾病和糖尿病提供了新的治疗可能性。最后,本文讨论了该领域面临的主要挑战,包括纳米酶的可扩展性、生物相容性和靶向性等问题。未来的研究应着眼于加强临床转化,以确保纳米酶在实际治疗应用中发挥有效作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.80
自引率
0.00%
发文量
501
审稿时长
27 days
期刊介绍: Biomaterials Advances, previously known as Materials Science and Engineering: C-Materials for Biological Applications (P-ISSN: 0928-4931, E-ISSN: 1873-0191). Includes topics at the interface of the biomedical sciences and materials engineering. These topics include: • Bioinspired and biomimetic materials for medical applications • Materials of biological origin for medical applications • Materials for "active" medical applications • Self-assembling and self-healing materials for medical applications • "Smart" (i.e., stimulus-response) materials for medical applications • Ceramic, metallic, polymeric, and composite materials for medical applications • Materials for in vivo sensing • Materials for in vivo imaging • Materials for delivery of pharmacologic agents and vaccines • Novel approaches for characterizing and modeling materials for medical applications Manuscripts on biological topics without a materials science component, or manuscripts on materials science without biological applications, will not be considered for publication in Materials Science and Engineering C. New submissions are first assessed for language, scope and originality (plagiarism check) and can be desk rejected before review if they need English language improvements, are out of scope or present excessive duplication with published sources. Biomaterials Advances sits within Elsevier''s biomaterials science portfolio alongside Biomaterials, Materials Today Bio and Biomaterials and Biosystems. As part of the broader Materials Today family, Biomaterials Advances offers authors rigorous peer review, rapid decisions, and high visibility. We look forward to receiving your submissions!
期刊最新文献
Relation between shape-tailored CeO2 nanoparticles morphology and hemocompatibility and antimicrobial effect Bio-inspired, programmable biomacromolecules based nanostructures driven cancer therapy Erythrocyte membrane vesicles as drug delivery systems: A systematic review of preclinical studies on biodistribution and pharmacokinetics Digital light processing of photo-crosslinkable gelatin to create biomimetic 3D constructs serving small intestinal tissue regeneration Glycosylation-driven interactions of nanoparticles with the extracellular matrix: Implications for inflammation and drug delivery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1