Innovative Infrared Spectroscopic Technologies for the Prediction of Deoxynivalenol in Wheat.

IF 2.6 Q2 FOOD SCIENCE & TECHNOLOGY ACS food science & technology Pub Date : 2025-01-08 eCollection Date: 2025-01-17 DOI:10.1021/acsfoodscitech.4c00730
Polina Fomina, Antoni Femenias, Miriam Aledda, Valeria Tafintseva, Stephan Freitag, Michael Sulyok, Achim Kohler, Rudolf Krska, Boris Mizaikoff
{"title":"Innovative Infrared Spectroscopic Technologies for the Prediction of Deoxynivalenol in Wheat.","authors":"Polina Fomina, Antoni Femenias, Miriam Aledda, Valeria Tafintseva, Stephan Freitag, Michael Sulyok, Achim Kohler, Rudolf Krska, Boris Mizaikoff","doi":"10.1021/acsfoodscitech.4c00730","DOIUrl":null,"url":null,"abstract":"<p><p>Mycotoxin contamination in cereals is a global food safety concern. One of the most common mycotoxins in grains is deoxynivalenol (DON), a secondary metabolite produced by the fungi<i>Fusarium graminearum</i> and <i>Fusarium culmorum</i>. Exposure to DON can lead to adverse health effects in both humans and animals including vomiting, dizziness, and fever. Hence, the development of analytical technologies capable of predicting mycotoxin contamination levels in grains is crucial. In this study, we emphasize innovative infrared (IR) spectroscopic technologies for the prediction of DON in wheat along the food supply chain. The performance of an IR laser spectroscopic platform for on-site or laboratory confirmative analysis was evaluated. Furthermore, the performance of a handheld IR spectrometer for preliminary screening during transportation, storage, or harvesting was assessed. The accuracy of cross validation (Acc<sub>CV</sub>) obtained with the laser spectrometer reached 92%, while the handheld IR spectrometer achieved 84.6%. Hence, both technologies prove significant potential for rapid mycotoxin detection.</p>","PeriodicalId":72048,"journal":{"name":"ACS food science & technology","volume":"5 1","pages":"209-217"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744748/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS food science & technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsfoodscitech.4c00730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/17 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mycotoxin contamination in cereals is a global food safety concern. One of the most common mycotoxins in grains is deoxynivalenol (DON), a secondary metabolite produced by the fungiFusarium graminearum and Fusarium culmorum. Exposure to DON can lead to adverse health effects in both humans and animals including vomiting, dizziness, and fever. Hence, the development of analytical technologies capable of predicting mycotoxin contamination levels in grains is crucial. In this study, we emphasize innovative infrared (IR) spectroscopic technologies for the prediction of DON in wheat along the food supply chain. The performance of an IR laser spectroscopic platform for on-site or laboratory confirmative analysis was evaluated. Furthermore, the performance of a handheld IR spectrometer for preliminary screening during transportation, storage, or harvesting was assessed. The accuracy of cross validation (AccCV) obtained with the laser spectrometer reached 92%, while the handheld IR spectrometer achieved 84.6%. Hence, both technologies prove significant potential for rapid mycotoxin detection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小麦脱氧雪腐镰刀菌醇红外光谱预测新技术
谷物中的霉菌毒素污染是一个全球性的食品安全问题。谷物中最常见的真菌毒素之一是脱氧雪腐镰刀菌醇(DON),它是由谷物镰刀菌和镰刀菌产生的次生代谢物。接触DON会对人类和动物的健康造成不良影响,包括呕吐、头晕和发烧。因此,能够预测谷物中霉菌毒素污染水平的分析技术的发展至关重要。在这项研究中,我们强调创新的红外(IR)光谱技术用于预测小麦在食品供应链中的DON。对用于现场或实验室确证分析的红外激光光谱平台的性能进行了评估。此外,手持式红外光谱仪在运输、储存或收获过程中进行初步筛选的性能进行了评估。激光光谱仪的交叉验证(AccCV)精度达到92%,手持式红外光谱仪的交叉验证精度达到84.6%。因此,这两种技术证明了快速检测霉菌毒素的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
期刊最新文献
Issue Editorial Masthead Issue Publication Information Sustainability and Biodiversity Are Essential for Nurturing a Planet on the Path to Recovery Pickering Emulsions as Catalytic Systems in Food Applications. Pickering Emulsions as Catalytic Systems in Food Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1