CAMIL: channel attention-based multiple instance learning for whole slide image classification.

Jinyang Mao, Junlin Xu, Xianfang Tang, Yongjin Liu, Heaven Zhao, Geng Tian, Jialiang Yang
{"title":"CAMIL: channel attention-based multiple instance learning for whole slide image classification.","authors":"Jinyang Mao, Junlin Xu, Xianfang Tang, Yongjin Liu, Heaven Zhao, Geng Tian, Jialiang Yang","doi":"10.1093/bioinformatics/btaf024","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The classification task based on whole-slide images (WSIs) is a classic problem in computational pathology. Multiple instance learning (MIL) provides a robust framework for analyzing whole slide images with slide-level labels at gigapixel resolution. However, existing MIL models typically focus on modeling the relationships between instances while neglecting the variability across the channel dimensions of instances, which prevents the model from fully capturing critical information in the channel dimension.</p><p><strong>Results: </strong>To address this issue, we propose a plug-and-play module called Multi-scale Channel Attention Block (MCAB), which models the interdependencies between channels by leveraging local features with different receptive fields. By alternately stacking four layers of Transformer and MCAB, we designed a channel attention-based MIL model (CAMIL) capable of simultaneously modeling both inter-instance relationships and intra-channel dependencies. To verify the performance of the proposed CAMIL in classification tasks, several comprehensive experiments were conducted across three datasets: Camelyon16, TCGA-NSCLC, and TCGA-RCC. Empirical results demonstrate that, whether the feature extractor is pretrained on natural images or on WSIs, our CAMIL surpasses current state-of-the-art MIL models across multiple evaluation metrics.</p><p><strong>Availability and implementation: </strong>All implementation code is available at https://github.com/maojy0914/CAMIL.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802473/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: The classification task based on whole-slide images (WSIs) is a classic problem in computational pathology. Multiple instance learning (MIL) provides a robust framework for analyzing whole slide images with slide-level labels at gigapixel resolution. However, existing MIL models typically focus on modeling the relationships between instances while neglecting the variability across the channel dimensions of instances, which prevents the model from fully capturing critical information in the channel dimension.

Results: To address this issue, we propose a plug-and-play module called Multi-scale Channel Attention Block (MCAB), which models the interdependencies between channels by leveraging local features with different receptive fields. By alternately stacking four layers of Transformer and MCAB, we designed a channel attention-based MIL model (CAMIL) capable of simultaneously modeling both inter-instance relationships and intra-channel dependencies. To verify the performance of the proposed CAMIL in classification tasks, several comprehensive experiments were conducted across three datasets: Camelyon16, TCGA-NSCLC, and TCGA-RCC. Empirical results demonstrate that, whether the feature extractor is pretrained on natural images or on WSIs, our CAMIL surpasses current state-of-the-art MIL models across multiple evaluation metrics.

Availability and implementation: All implementation code is available at https://github.com/maojy0914/CAMIL.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CAMIL:基于多实例学习的全幻灯片图像分类。
动机:基于全切片图像的分类任务是计算病理学中的一个经典问题。多实例学习(MIL)为分析具有十亿像素分辨率的幻灯片级标签的整个幻灯片图像提供了一个强大的框架。然而,现有的MIL模型通常侧重于对实例之间的关系进行建模,而忽略了实例的通道维度之间的可变性,这使得模型无法完全捕获通道维度中的关键信息。结果:为了解决这个问题,我们提出了一个即插即用的模块,称为多尺度通道注意块(MCAB),它通过利用具有不同接受域的局部特征来模拟通道之间的相互依赖性。通过交替叠加四层Transformer和MCAB,我们设计了一个基于通道注意的MIL模型(CAMIL),该模型能够同时建模实例间关系和通道内依赖关系。为了验证所提出的CAMIL在分类任务中的性能,我们在Camelyon16、TCGA-NSCLC和TCGA-RCC三个数据集上进行了多项综合实验。实证结果表明,无论特征提取器是在自然图像上还是在wsi上进行预训练,我们的CAMIL在多个评估指标上都超过了当前最先进的MIL模型。可用性:所有实现代码可在https://github.com/maojy0914/CAMIL.Supplementary上获得信息:补充数据可在Bioinformatics在线上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HTSinfer: Inferring metadata from bulk illumina RNA-Seq libraries. MOSTPLAS: A Self-correction Multi-label Learning Model for Plasmid Host Range Prediction. GCLink: a graph contrastive link prediction framework for gene regulatory network inference. PNL: a software to build polygenic risk scores using a Super Learner approach based on PairNet, a Convolutional Neural Network. TiltRec: An ultra-fast and open-source toolkit for cryo-electron tomographic reconstruction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1