{"title":"Genome-wide identification and analysis of the NF-Y transcription factor family reveal its potential roles in tobacco (<i>Nicotiana tabacum</i> L.).","authors":"Zhen Tian, Luyao Xue, Jincun Fu, Wenting Song, Baojian Wang, Jinhao Sun, Xiujiang Yue, Fanrui Cheng, Jingjing Mao, Jiangtao Chao, Dawei Wang, Shaopeng Li","doi":"10.1080/15592324.2025.2451700","DOIUrl":null,"url":null,"abstract":"<p><p>Nuclear Factor Y (NF-Y) represents a group of transcription factors commonly present in higher eukaryotes, typically consisting of three subunits: NF-YA, NF-YB, and NF-YC. They play crucial roles in the embryonic development, photosynthesis, flowering, abiotic stress responses, and other essential processes in plants. To better understand the genome-wide NF-Y domain-containing proteins, the protein physicochemical properties, chromosomal localization, synteny, phylogenetic relationships, genomic structure, promoter <i>cis</i>-elements, and protein interaction network of NtNF-Ys in tobacco (<i>Nicotiana tabacum</i> L.) were systematically analyzed. In this study, we identified 58 NtNF-Ys in tobacco, respectively, and divided into three subfamilies corresponding to their phylogenetic relationships. Their tissue specificity and expression pattern analyses for leaf development, drought and saline-alkali stress, and ABA response were carried out using RNA-seq or qRT-PCR. These findings illuminate the role of NtNF-Ys in regulating plant leaf development, drought and saline-alkali stress tolerance, and ABA response. This study offers new insights to enhance our understanding of the roles of NtNF-Ys and identify potential genes involved in leaf development, as well as drought and saline-alkali stress tolerance of plants.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"20 1","pages":"2451700"},"PeriodicalIF":0.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740682/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant signaling & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15592324.2025.2451700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nuclear Factor Y (NF-Y) represents a group of transcription factors commonly present in higher eukaryotes, typically consisting of three subunits: NF-YA, NF-YB, and NF-YC. They play crucial roles in the embryonic development, photosynthesis, flowering, abiotic stress responses, and other essential processes in plants. To better understand the genome-wide NF-Y domain-containing proteins, the protein physicochemical properties, chromosomal localization, synteny, phylogenetic relationships, genomic structure, promoter cis-elements, and protein interaction network of NtNF-Ys in tobacco (Nicotiana tabacum L.) were systematically analyzed. In this study, we identified 58 NtNF-Ys in tobacco, respectively, and divided into three subfamilies corresponding to their phylogenetic relationships. Their tissue specificity and expression pattern analyses for leaf development, drought and saline-alkali stress, and ABA response were carried out using RNA-seq or qRT-PCR. These findings illuminate the role of NtNF-Ys in regulating plant leaf development, drought and saline-alkali stress tolerance, and ABA response. This study offers new insights to enhance our understanding of the roles of NtNF-Ys and identify potential genes involved in leaf development, as well as drought and saline-alkali stress tolerance of plants.