{"title":"Dual balanced readout for scattered light noise mitigation in Michelson interferometers","authors":"André Lohde, Daniel Voigt, Oliver Gerberding","doi":"10.1103/physrevd.111.022004","DOIUrl":null,"url":null,"abstract":"Ground-based gravitational wave detectors use laser interferometry to detect the minuscule distance change between test masses caused by gravitational waves. Stray light that scatters back into the interferometer causes transient signals that can cover the same frequency range as a potential gravitational wave signal. This scattered light noise is a potentially limiting factor in current and future detectors thus making it relevant to find new ways to mitigate it. Here, we demonstrate experimentally a technique for the subtraction of scattered light noise from the displacement readout of a Michelson interferometer. It is based on using a balanced homodyne detector at both the symmetric and the antisymmetric port. While we have been able to demonstrate a noise reduction of 13.2 dB, the readout scheme seems to be only limited by the associated noise couplings, i.e., shot noise and the coupling of laser noise. We also discuss challenges for using the dual balanced homodyne detection scheme in more complex interferometer topologies, which could lead to improvements in scattered light noise mitigation of gravitational wave detectors. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"59 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.022004","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Ground-based gravitational wave detectors use laser interferometry to detect the minuscule distance change between test masses caused by gravitational waves. Stray light that scatters back into the interferometer causes transient signals that can cover the same frequency range as a potential gravitational wave signal. This scattered light noise is a potentially limiting factor in current and future detectors thus making it relevant to find new ways to mitigate it. Here, we demonstrate experimentally a technique for the subtraction of scattered light noise from the displacement readout of a Michelson interferometer. It is based on using a balanced homodyne detector at both the symmetric and the antisymmetric port. While we have been able to demonstrate a noise reduction of 13.2 dB, the readout scheme seems to be only limited by the associated noise couplings, i.e., shot noise and the coupling of laser noise. We also discuss challenges for using the dual balanced homodyne detection scheme in more complex interferometer topologies, which could lead to improvements in scattered light noise mitigation of gravitational wave detectors. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.