Dual balanced readout for scattered light noise mitigation in Michelson interferometers

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy Physical Review D Pub Date : 2025-01-22 DOI:10.1103/physrevd.111.022004
André Lohde, Daniel Voigt, Oliver Gerberding
{"title":"Dual balanced readout for scattered light noise mitigation in Michelson interferometers","authors":"André Lohde, Daniel Voigt, Oliver Gerberding","doi":"10.1103/physrevd.111.022004","DOIUrl":null,"url":null,"abstract":"Ground-based gravitational wave detectors use laser interferometry to detect the minuscule distance change between test masses caused by gravitational waves. Stray light that scatters back into the interferometer causes transient signals that can cover the same frequency range as a potential gravitational wave signal. This scattered light noise is a potentially limiting factor in current and future detectors thus making it relevant to find new ways to mitigate it. Here, we demonstrate experimentally a technique for the subtraction of scattered light noise from the displacement readout of a Michelson interferometer. It is based on using a balanced homodyne detector at both the symmetric and the antisymmetric port. While we have been able to demonstrate a noise reduction of 13.2 dB, the readout scheme seems to be only limited by the associated noise couplings, i.e., shot noise and the coupling of laser noise. We also discuss challenges for using the dual balanced homodyne detection scheme in more complex interferometer topologies, which could lead to improvements in scattered light noise mitigation of gravitational wave detectors. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"59 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.022004","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Ground-based gravitational wave detectors use laser interferometry to detect the minuscule distance change between test masses caused by gravitational waves. Stray light that scatters back into the interferometer causes transient signals that can cover the same frequency range as a potential gravitational wave signal. This scattered light noise is a potentially limiting factor in current and future detectors thus making it relevant to find new ways to mitigate it. Here, we demonstrate experimentally a technique for the subtraction of scattered light noise from the displacement readout of a Michelson interferometer. It is based on using a balanced homodyne detector at both the symmetric and the antisymmetric port. While we have been able to demonstrate a noise reduction of 13.2 dB, the readout scheme seems to be only limited by the associated noise couplings, i.e., shot noise and the coupling of laser noise. We also discuss challenges for using the dual balanced homodyne detection scheme in more complex interferometer topologies, which could lead to improvements in scattered light noise mitigation of gravitational wave detectors. Published by the American Physical Society 2025
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双平衡读数的散射光噪声缓解在迈克尔逊干涉仪
地面引力波探测器使用激光干涉测量法来探测引力波引起的测试质量之间的微小距离变化。散射回干涉仪的杂散光产生的瞬态信号可以覆盖与潜在引力波信号相同的频率范围。这种散射光噪声是当前和未来探测器的潜在限制因素,因此寻找新的方法来减轻它是相关的。在这里,我们通过实验证明了一种从迈克尔逊干涉仪的位移读出中减去散射光噪声的技术。它是基于在对称和反对称端口都使用平衡同差检测器。虽然我们已经能够证明降噪13.2 dB,但读出方案似乎只受相关噪声耦合的限制,即射击噪声和激光噪声的耦合。我们还讨论了在更复杂的干涉仪拓扑中使用双平衡纯差检测方案所面临的挑战,这可能导致引力波探测器散射光噪声缓解的改进。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
期刊最新文献
τ -lepton pair spin in proton-proton LHC collisions for anomalous dipole moments Quasistationary hair for binary black hole initial data in scalar Gauss-Bonnet gravity Efficient GPU-accelerated multisource global fit pipeline for LISA data analysis Simulation of the process e+e−→W+W− with the heavy right-handed neutrino exchange at 1 TeV future lepton colliders Black hole effective theory for strongly interacting matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1