Michael L. Katz, Nikolaos Karnesis, Natalia Korsakova, Jonathan R. Gair, Nikolaos Stergioulas
{"title":"Efficient GPU-accelerated multisource global fit pipeline for LISA data analysis","authors":"Michael L. Katz, Nikolaos Karnesis, Natalia Korsakova, Jonathan R. Gair, Nikolaos Stergioulas","doi":"10.1103/physrevd.111.024060","DOIUrl":null,"url":null,"abstract":"The large-scale analysis task of deciphering gravitational-wave signals in the LISA data stream will be difficult, requiring a large amount of computational resources and extensive development of computational methods. Its high dimensionality, multiple model types, and complicated noise profile require a global fit to all parameters and input models simultaneously. In this work, we detail our global fit algorithm, called “Erebor,” designed to accomplish this challenging task. It is capable of analyzing current state-of-the-art datasets and then growing into the future as more pieces of the pipeline are completed and added. We describe our pipeline strategy, the algorithmic setup, and the results from our analysis of the LDC2A Sangria dataset, which contains massive black hole binaries, compact galactic binaries, and a parametrized noise spectrum whose parameters are unknown to the user. The Erebor algorithm includes three unique and very useful contributions: GPU acceleration for enhanced computational efficiency; ensemble Markov Chain Monte Carlo (MCMC) sampling with multiple MCMC walkers per temperature for better mixing and parallelized sample creation; and special online updates to reversible-jump (or transdimensional) sampling distributions to ensure sampler mixing and accurate initial estimates for detectable sources in the data. We recover posterior distributions for all 15 (6) of the injected massive black hole binaries (MBHB) in the LDC2A training (hidden) dataset. We catalog ∼</a:mo>12000</a:mn></a:math> galactic binaries (<c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mo>∼</c:mo><c:mn>8000</c:mn></c:math> as high confidence detections) for both the training and hidden datasets. All of the sources and their posterior distributions are provided in publicly available catalogs. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"30 11 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.024060","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The large-scale analysis task of deciphering gravitational-wave signals in the LISA data stream will be difficult, requiring a large amount of computational resources and extensive development of computational methods. Its high dimensionality, multiple model types, and complicated noise profile require a global fit to all parameters and input models simultaneously. In this work, we detail our global fit algorithm, called “Erebor,” designed to accomplish this challenging task. It is capable of analyzing current state-of-the-art datasets and then growing into the future as more pieces of the pipeline are completed and added. We describe our pipeline strategy, the algorithmic setup, and the results from our analysis of the LDC2A Sangria dataset, which contains massive black hole binaries, compact galactic binaries, and a parametrized noise spectrum whose parameters are unknown to the user. The Erebor algorithm includes three unique and very useful contributions: GPU acceleration for enhanced computational efficiency; ensemble Markov Chain Monte Carlo (MCMC) sampling with multiple MCMC walkers per temperature for better mixing and parallelized sample creation; and special online updates to reversible-jump (or transdimensional) sampling distributions to ensure sampler mixing and accurate initial estimates for detectable sources in the data. We recover posterior distributions for all 15 (6) of the injected massive black hole binaries (MBHB) in the LDC2A training (hidden) dataset. We catalog ∼12000 galactic binaries (∼8000 as high confidence detections) for both the training and hidden datasets. All of the sources and their posterior distributions are provided in publicly available catalogs. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.