Temperature-dependent solid electrolyte interphase reactions drive performance in lithium-mediated nitrogen reduction to ammonia

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Joule Pub Date : 2025-01-23 DOI:10.1016/j.joule.2024.101810
Peter Benedek, Yamile E. Cornejo-Carrillo, Alden H. O’Rafferty, Valerie A. Niemann, Sang-Won Lee, Eric J. McShane, Matteo Cargnello, Adam C. Nielander, Thomas F. Jaramillo
{"title":"Temperature-dependent solid electrolyte interphase reactions drive performance in lithium-mediated nitrogen reduction to ammonia","authors":"Peter Benedek, Yamile E. Cornejo-Carrillo, Alden H. O’Rafferty, Valerie A. Niemann, Sang-Won Lee, Eric J. McShane, Matteo Cargnello, Adam C. Nielander, Thomas F. Jaramillo","doi":"10.1016/j.joule.2024.101810","DOIUrl":null,"url":null,"abstract":"The solid electrolyte interphase (SEI) is a vital component to control mass transport and selectivity in the lithium-mediated reduction of N<sub>2</sub> to NH<sub>3</sub> (Li-N<sub>2</sub>R). Finding strategies that generate the optimal SEI, a complex network of organic and inorganic species, can potentially improve Li-N<sub>2</sub>R performance. Here, we unravel structure-property relationships of the SEI by correlating its composition with the NH<sub>3</sub> Faradaic efficiency (FE<sub>NH3</sub>). By modifying the reaction temperature, we alter electrolyte decomposition reactions and observe changes in the SEI that explain FE<sub>NH3</sub> trends between electrolyte solvents. We quantify a complex reaction environment at elevated temperatures where SEI formation is counteracted by etching reactions. This trade-off leads to temporal fluctuations of FE<sub>NH3</sub>, but the maximal FE<sub>NH3</sub> can reach up to 40%, the highest value reported for batch cells at ambient pressure thus far. Our work underscores the potential of novel electrolytes that steer SEI selectivity and, ultimately, improve Li-N<sub>2</sub>R performance.","PeriodicalId":343,"journal":{"name":"Joule","volume":"13 1","pages":""},"PeriodicalIF":38.6000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2024.101810","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The solid electrolyte interphase (SEI) is a vital component to control mass transport and selectivity in the lithium-mediated reduction of N2 to NH3 (Li-N2R). Finding strategies that generate the optimal SEI, a complex network of organic and inorganic species, can potentially improve Li-N2R performance. Here, we unravel structure-property relationships of the SEI by correlating its composition with the NH3 Faradaic efficiency (FENH3). By modifying the reaction temperature, we alter electrolyte decomposition reactions and observe changes in the SEI that explain FENH3 trends between electrolyte solvents. We quantify a complex reaction environment at elevated temperatures where SEI formation is counteracted by etching reactions. This trade-off leads to temporal fluctuations of FENH3, but the maximal FENH3 can reach up to 40%, the highest value reported for batch cells at ambient pressure thus far. Our work underscores the potential of novel electrolytes that steer SEI selectivity and, ultimately, improve Li-N2R performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
温度依赖的固体电解质相间反应驱动锂介导的氮还原成氨的性能
固体电解质间相(SEI)是控制锂离子介导的N2还原为NH3 (Li-N2R)过程中质量传递和选择性的重要组成部分。寻找产生最佳SEI(有机和无机物质的复杂网络)的策略,可以潜在地提高Li-N2R的性能。在这里,我们通过将SEI的组成与NH3法拉第效率(FENH3)相关联来揭示SEI的结构-性质关系。通过改变反应温度,我们改变了电解质分解反应,并观察了SEI的变化,解释了电解质溶剂之间FENH3的变化趋势。我们量化了在高温下的复杂反应环境,其中SEI形成被蚀刻反应抵消。这种权衡导致FENH3的时间波动,但最大的FENH3可以达到40%,这是迄今为止在环境压力下批量电池报道的最高值。我们的工作强调了新型电解质的潜力,这种电解质可以引导SEI选择性,并最终提高Li-N2R的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
期刊最新文献
Highly rechargeable aqueous Sn-metal-based hybrid-ion batteries Solvation entropy engineering of thermogalvanic electrolytes for efficient electrochemical refrigeration 24/7 carbon-free electricity matching accelerates adoption of advanced clean energy technologies A low-cost and bendable “cage” for stable rigid and flexible perovskite solar cells with negligible lead leakage Rigid molecules anchoring on NiOx enable >26% efficiency perovskite solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1