{"title":"High-entropy lead-free relaxors for large capacitive energy storage with superior comprehensive performance","authors":"Jianhong Duan, Kun Wei, He Qi, Huifen Yu, Hao Li","doi":"10.1016/j.jmst.2024.11.073","DOIUrl":null,"url":null,"abstract":"Dielectric ceramics with ultrahigh power density and ultrafast charge/discharge rates are crucial components of advanced dielectric capacitors. However, enhancing their comprehensive performance remains a major challenge for cutting-edge applications. Here, a high-entropy strategy is proposed to construct multiple local distortions, including various types of oxygen octahedral tilts, highly dynamic polar nanoregions, and lattice distortions. This approach effectively delays polarization saturation, reduces energy loss, and, in conjunction with the ultrafine grains induced by the high-entropy effect, enhances mechanical properties and breakdown field. Therefore, a remarkable recoverable energy density of 9.1 J cm<sup>−3</sup>, a high conversion efficiency of 82.7%, and a large Vickers hardness of 8.77 GPa are simultaneously achieved in 0.73Bi<sub>0.47</sub>Na<sub>0.47</sub>Ba<sub>0.06</sub>TiO<sub>3</sub>–0.27Ca<sub>0.7</sub>La<sub>0.2</sub>Zr<sub>0.15</sub>Ti<sub>0.85</sub>O<sub>3</sub> lead-free high-entropy relaxors. Additionally, superior frequency and temperature stability, as well as excellent charge/discharge performance, are also obtained. These findings demonstrate that the high-entropy strategy is a promising method for designing high-performance dielectric ceramics.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"4 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.11.073","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Dielectric ceramics with ultrahigh power density and ultrafast charge/discharge rates are crucial components of advanced dielectric capacitors. However, enhancing their comprehensive performance remains a major challenge for cutting-edge applications. Here, a high-entropy strategy is proposed to construct multiple local distortions, including various types of oxygen octahedral tilts, highly dynamic polar nanoregions, and lattice distortions. This approach effectively delays polarization saturation, reduces energy loss, and, in conjunction with the ultrafine grains induced by the high-entropy effect, enhances mechanical properties and breakdown field. Therefore, a remarkable recoverable energy density of 9.1 J cm−3, a high conversion efficiency of 82.7%, and a large Vickers hardness of 8.77 GPa are simultaneously achieved in 0.73Bi0.47Na0.47Ba0.06TiO3–0.27Ca0.7La0.2Zr0.15Ti0.85O3 lead-free high-entropy relaxors. Additionally, superior frequency and temperature stability, as well as excellent charge/discharge performance, are also obtained. These findings demonstrate that the high-entropy strategy is a promising method for designing high-performance dielectric ceramics.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.