An innovative pH control strategy for alleviating membrane fouling in bipolar membrane electrodialysis during ultraviolet stabilizer production wastewater treatment

IF 8.1 1区 工程技术 Q1 ENGINEERING, CHEMICAL Separation and Purification Technology Pub Date : 2025-01-22 DOI:10.1016/j.seppur.2025.131749
Jie Wu, Zhengyang Jiang, Hancheng Xie, Jinlong Fan, Yaoyin Lou, Jian Liu, Shaohua Chen, Yaoxing Liu, Xin Ye
{"title":"An innovative pH control strategy for alleviating membrane fouling in bipolar membrane electrodialysis during ultraviolet stabilizer production wastewater treatment","authors":"Jie Wu, Zhengyang Jiang, Hancheng Xie, Jinlong Fan, Yaoyin Lou, Jian Liu, Shaohua Chen, Yaoxing Liu, Xin Ye","doi":"10.1016/j.seppur.2025.131749","DOIUrl":null,"url":null,"abstract":"Developing an effective resource utilization approach for ultraviolet stabilizer (UVS) wastewater is challenging due to its high-salinity and complex organic pollutants. This study employed bipolar membrane electrodialysis (BMED) to reclaim acid and base from actual UVS wastewater. To alleviate potential membrane fouling caused by specific UVS organics, an innovative two-stage pH control strategy and its mechanisms were developed. Results indicate that pH regulation is crucial for the stable operation of a 3.6 kg/d on-site pilot-scale BMED system. Under optimal conditions of current density (40 mA/cm<sup>2</sup>), initial acid-base concentration (0.02 mol/L), and initial volume ratio (2:2:1), high concentrations of 1.03 mol/L acid and 1.90 mol/L base can be reclaimed with low energy consumption. Analysis of membrane surface morphology, hydrophobicity, and resistance, along with the distribution of organic substances, shows that the two-stage pH regulation reduces fouling by probably minimizing electromigration, aggregation, hydrophobic interaction, adsorption, and deposition of humic- and tryptophan-like substances. Compared to conventional initial pH adjustments, the two-stage pH regulation approach stabilizes acid/base production while reducing process costs to $1.5/kg acid and $1.0/kg base. A life cycle cost analysis reveals that, at a BMED treatment capacity of 20 m<sup>3</sup>/d, savings of up to $774.7 thousand can be realized over a 3-year lifespan, with a relative payback period of 1.2 years. These findings highlight that BMED coupled with two-stage pH regulation is effective for the acid and base reclamation from UVS wastewater, offering a practical solution for sustainable resource recovery and achieving zero wastewater discharge.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"52 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2025.131749","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Developing an effective resource utilization approach for ultraviolet stabilizer (UVS) wastewater is challenging due to its high-salinity and complex organic pollutants. This study employed bipolar membrane electrodialysis (BMED) to reclaim acid and base from actual UVS wastewater. To alleviate potential membrane fouling caused by specific UVS organics, an innovative two-stage pH control strategy and its mechanisms were developed. Results indicate that pH regulation is crucial for the stable operation of a 3.6 kg/d on-site pilot-scale BMED system. Under optimal conditions of current density (40 mA/cm2), initial acid-base concentration (0.02 mol/L), and initial volume ratio (2:2:1), high concentrations of 1.03 mol/L acid and 1.90 mol/L base can be reclaimed with low energy consumption. Analysis of membrane surface morphology, hydrophobicity, and resistance, along with the distribution of organic substances, shows that the two-stage pH regulation reduces fouling by probably minimizing electromigration, aggregation, hydrophobic interaction, adsorption, and deposition of humic- and tryptophan-like substances. Compared to conventional initial pH adjustments, the two-stage pH regulation approach stabilizes acid/base production while reducing process costs to $1.5/kg acid and $1.0/kg base. A life cycle cost analysis reveals that, at a BMED treatment capacity of 20 m3/d, savings of up to $774.7 thousand can be realized over a 3-year lifespan, with a relative payback period of 1.2 years. These findings highlight that BMED coupled with two-stage pH regulation is effective for the acid and base reclamation from UVS wastewater, offering a practical solution for sustainable resource recovery and achieving zero wastewater discharge.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
紫外稳定剂生产废水处理过程中双极膜电渗析膜污染的pH控制策略
紫外线稳定剂废水由于其高盐度和复杂的有机污染物,开发有效的资源利用方法具有挑战性。本研究采用双极膜电渗析(BMED)技术回收实际紫外线废水中的酸和碱。为了减轻特定uv有机物引起的潜在膜污染,提出了一种创新的两阶段pH控制策略及其机制。结果表明,pH调节对于3.6 kg/d现场中试BMED系统的稳定运行至关重要。在电流密度(40 mA/cm2)、初始酸碱浓度(0.02 mol/L)、初始体积比(2:2:1)的最优条件下,可以低能耗回收高浓度1.03 mol/L酸和1.90 mol/L碱。对膜表面形态、疏水性和抗性以及有机物分布的分析表明,两阶段pH调节可能通过最小化腐殖质和色氨酸样物质的电迁移、聚集、疏水相互作用、吸附和沉积来减少污染。与传统的初始pH调节方法相比,两阶段pH调节方法稳定了酸碱产量,同时将工艺成本降至1.5美元/千克酸和1.0美元/千克碱。生命周期成本分析显示,在BMED处理能力为20 m3/d的情况下,在3年的使用寿命内可节省高达774.7万美元,相对投资回收期为1.2 年。上述研究结果表明,BMED结合两级pH调节对uv废水的酸碱回收是有效的,为实现资源可持续回收和废水零排放提供了切实可行的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Separation and Purification Technology
Separation and Purification Technology 工程技术-工程:化工
CiteScore
14.00
自引率
12.80%
发文量
2347
审稿时长
43 days
期刊介绍: Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.
期刊最新文献
Dual-driven charge transport enabled by S-scheme heterojunction and solid solution in CdS@N-NiCoO photocatalysts for enhanced hydrogen evolution Extracting metallic lithium and separating diffusion pump oil from lithium slag using a novel negative pressure distillation technology Additive promoted supported mixed amines on mesoporous silica for cyclic capture of carbon dioxide A conical array water evaporator with anti-biofouling, salt-rejecting and anti-polyelectrolyte effect for efficient solar energy-driven seawater desalination Permanganate pretreatment Improves the production of short chain fatty acids from waste activated sludge at pH10: Performance and mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1