Ruiyuan Jia, Xiaomeng Yu, Wenhui Wang, Kemeng Du, Yuru Liu, Yufei Wang, Wenjun Wu, Jin Guo
{"title":"NCNT@La-PES composite membrane activates peroxymonosulfate for the degradation of HEDP and adsorptive recycling of phosphorous","authors":"Ruiyuan Jia, Xiaomeng Yu, Wenhui Wang, Kemeng Du, Yuru Liu, Yufei Wang, Wenjun Wu, Jin Guo","doi":"10.1016/j.seppur.2025.132630","DOIUrl":null,"url":null,"abstract":"A lanthanum-modified polyethersulfone composite membrane (La-PES) loaded with nitrogen-doped carbon nanotubes (NCNT@La-PES) was successfully fabricated in this study. The NCNT@La-PES membrane could activate PMS, which enabled the degradation of phosphonate to phosphate, while also possessing the capability for adsorptive recycling of phosphorus. During the processing of 10.31 mg/L 1-hydroxyethane-1,1-diphosphonic acid (HEDP) in the NCNT@La-PES / PMS system, the removal efficiency of HEDP achieved 100 %, and almost 78 % of total phosphate (TP) in HEDP was transformed into phosphate, which were further adsorptive recycled by the La-PES membrane. The NCNT@La-PES/PMS system demonstrated exceptional performance across a broad pH range (4–10), with complete removal of HEDP and adsorption recovery of 73 % transformed phosphate. The decrease in pH caused by catalytic reaction reduced the hindrance of the alkaline environment to phosphate adsorption. The NCNT, acting as a catalyst, facilitated the formation of surface-bound radicals upon PMS activation, playing a pivotal role in the degradation of HEDP. The adsorption of phosphate by La-PES was primarily attributed to the ligand exchange between La(OH)<sub>3</sub> and phosphate. Moreover, NCNT@La-PES/PMS system showed significant catalytic and adsorption performance in consecutive cyclic treatment of HEDP in actual water, indicating its potential in practical application.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"21 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2025.132630","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A lanthanum-modified polyethersulfone composite membrane (La-PES) loaded with nitrogen-doped carbon nanotubes (NCNT@La-PES) was successfully fabricated in this study. The NCNT@La-PES membrane could activate PMS, which enabled the degradation of phosphonate to phosphate, while also possessing the capability for adsorptive recycling of phosphorus. During the processing of 10.31 mg/L 1-hydroxyethane-1,1-diphosphonic acid (HEDP) in the NCNT@La-PES / PMS system, the removal efficiency of HEDP achieved 100 %, and almost 78 % of total phosphate (TP) in HEDP was transformed into phosphate, which were further adsorptive recycled by the La-PES membrane. The NCNT@La-PES/PMS system demonstrated exceptional performance across a broad pH range (4–10), with complete removal of HEDP and adsorption recovery of 73 % transformed phosphate. The decrease in pH caused by catalytic reaction reduced the hindrance of the alkaline environment to phosphate adsorption. The NCNT, acting as a catalyst, facilitated the formation of surface-bound radicals upon PMS activation, playing a pivotal role in the degradation of HEDP. The adsorption of phosphate by La-PES was primarily attributed to the ligand exchange between La(OH)3 and phosphate. Moreover, NCNT@La-PES/PMS system showed significant catalytic and adsorption performance in consecutive cyclic treatment of HEDP in actual water, indicating its potential in practical application.
期刊介绍:
Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.