Probing the Signal Transduction Mechanism of the Light-Activated Adenylate Cyclase OaPAC Using Unnatural Amino Acid Mutagenesis.

IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Chemical Biology Pub Date : 2025-01-22 DOI:10.1021/acschembio.4c00627
Samruddhi S Jewlikar, Jinnette Tolentino Collado, Madeeha I Ali, Aya Sabbah, YongLe He, James N Iuliano, Christopher R Hall, Katrin Adamczyk, Gregory M Greetham, Andras Lukacs, Stephen R Meech, Peter J Tonge
{"title":"Probing the Signal Transduction Mechanism of the Light-Activated Adenylate Cyclase OaPAC Using Unnatural Amino Acid Mutagenesis.","authors":"Samruddhi S Jewlikar, Jinnette Tolentino Collado, Madeeha I Ali, Aya Sabbah, YongLe He, James N Iuliano, Christopher R Hall, Katrin Adamczyk, Gregory M Greetham, Andras Lukacs, Stephen R Meech, Peter J Tonge","doi":"10.1021/acschembio.4c00627","DOIUrl":null,"url":null,"abstract":"<p><p>OaPAC, the photoactivated adenylyl cyclase from <i>Oscillatoria acuminata</i>, is composed of a blue light using FAD (BLUF) domain fused to an adenylate cyclase (AC) domain. Since both the BLUF and AC domains are part of the same protein, OaPAC is a model for understanding how the ultrafast modulation of the chromophore binding pocket caused by photoexcitation results in the activation of the output domain on the μs-s time scale. In the present work, we use unnatural amino acid mutagenesis to identify specific sites in the protein that are involved in transducing the signal from the FAD binding site to the ATP binding site. To provide insight into site-specific structural dynamics, we replaced W90 which is close to the chromophore pocket, F103 which interacts with W90 across the dimer interface, and F180 in the central core of the AC domain, with the infrared probe azido-Phe (AzPhe). Using ultrafast IR, we show that AzPhe at position 90 responds on multiple time scales following photoexcitation. In contrast, the light minus dark IR spectrum of AzPhe103 shows only a minor perturbation in environment between the dark and light states, while replacement of F180 with AzPhe resulted in a protein with no catalytic activity. We also replaced Y125, which hydrogen bonds with N256 across the dimer interface, with fluoro-Tyr residues. All the fluoro-Tyr substituted proteins retained the light-induced red shift in the flavin absorption spectrum; however, only the 3-FY125 OaPAC retained photoinduced catalytic activity. The loss of activity in 3,5-F<sub>2</sub>Y125 and 2,3,5-F<sub>3</sub>Y125 OaPAC, which potentially increase the acidity of the Y125 phenol by more than 1000-fold, suggests that deprotonation of Y125 disrupts the signal transduction pathway from the BLUF to the AC domain.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.4c00627","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

OaPAC, the photoactivated adenylyl cyclase from Oscillatoria acuminata, is composed of a blue light using FAD (BLUF) domain fused to an adenylate cyclase (AC) domain. Since both the BLUF and AC domains are part of the same protein, OaPAC is a model for understanding how the ultrafast modulation of the chromophore binding pocket caused by photoexcitation results in the activation of the output domain on the μs-s time scale. In the present work, we use unnatural amino acid mutagenesis to identify specific sites in the protein that are involved in transducing the signal from the FAD binding site to the ATP binding site. To provide insight into site-specific structural dynamics, we replaced W90 which is close to the chromophore pocket, F103 which interacts with W90 across the dimer interface, and F180 in the central core of the AC domain, with the infrared probe azido-Phe (AzPhe). Using ultrafast IR, we show that AzPhe at position 90 responds on multiple time scales following photoexcitation. In contrast, the light minus dark IR spectrum of AzPhe103 shows only a minor perturbation in environment between the dark and light states, while replacement of F180 with AzPhe resulted in a protein with no catalytic activity. We also replaced Y125, which hydrogen bonds with N256 across the dimer interface, with fluoro-Tyr residues. All the fluoro-Tyr substituted proteins retained the light-induced red shift in the flavin absorption spectrum; however, only the 3-FY125 OaPAC retained photoinduced catalytic activity. The loss of activity in 3,5-F2Y125 and 2,3,5-F3Y125 OaPAC, which potentially increase the acidity of the Y125 phenol by more than 1000-fold, suggests that deprotonation of Y125 disrupts the signal transduction pathway from the BLUF to the AC domain.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Chemical Biology
ACS Chemical Biology 生物-生化与分子生物学
CiteScore
7.50
自引率
5.00%
发文量
353
审稿时长
3.3 months
期刊介绍: ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology. The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies. We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.
期刊最新文献
Probing the Signal Transduction Mechanism of the Light-Activated Adenylate Cyclase OaPAC Using Unnatural Amino Acid Mutagenesis. Development of an In Situ G Protein-Coupled Receptor Fragment Molecule Screening Approach with High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance. Tools for Intersectional Optical and Chemical Tagging on Cell Surfaces. Understanding the Glycosylation Pathways Involved in the Biosynthesis of the Sulfated Glycan Ligands for Siglecs. Tailored Bisacylphosphane Oxides for Precise Induction of Oxidative Stress-Mediated Cell Death in Biological Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1