{"title":"Effects of Silk Fibroin Hydrogel Degradation on the Proliferation and Chondrogenesis of Encapsulated Stem Cells","authors":"Tianhao Zhu, Guolong Cai, Weikun Zhao, Xiang Yao, Yaopeng Zhang","doi":"10.1021/acs.biomac.4c01676","DOIUrl":null,"url":null,"abstract":"<div><div>Silk fibroin (SF) hydrogels are widely used in three-dimensional (3D) cell culture and tissue repair. Despite their importance, few studies have focused on regulating their degradation and further revealing the effects of the degradation process on encapsulated cell behaviors. Herein, SF hydrogels with equivalent initial properties and different degradation rates were prepared by adjusting the ratios between the hydrogel-encapsulated normal SF microspheres (MS<sub>N</sub>) and enzyme-loaded SF microspheres (MS<sub>E</sub>). Further, cell experiments revealed that moderately accelerating the hydrogel degradation obviously improved the proliferation of MSCs during 7 days of culture. Slightly accelerating the hydrogel degradation promoted MSC chondrogenesis. However, too rapid of a hydrogel degradation was unfavorable for these cell behaviors. The relevant studies are expected to provide useful strategies for regulating SF hydrogel degradation and also afford new references for the development of excellent SF hydrogels and other protein-based biomaterials for cartilage regeneration.</div></div><div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (159KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 2","pages":"Pages 1305-1319"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1525779725000388","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Silk fibroin (SF) hydrogels are widely used in three-dimensional (3D) cell culture and tissue repair. Despite their importance, few studies have focused on regulating their degradation and further revealing the effects of the degradation process on encapsulated cell behaviors. Herein, SF hydrogels with equivalent initial properties and different degradation rates were prepared by adjusting the ratios between the hydrogel-encapsulated normal SF microspheres (MSN) and enzyme-loaded SF microspheres (MSE). Further, cell experiments revealed that moderately accelerating the hydrogel degradation obviously improved the proliferation of MSCs during 7 days of culture. Slightly accelerating the hydrogel degradation promoted MSC chondrogenesis. However, too rapid of a hydrogel degradation was unfavorable for these cell behaviors. The relevant studies are expected to provide useful strategies for regulating SF hydrogel degradation and also afford new references for the development of excellent SF hydrogels and other protein-based biomaterials for cartilage regeneration.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.