Supramolecular Polycations with a Linear-Star Architecture Containing Hydrophobic Poly[(R,S)-3-hydroxybutyrate]: Formation of DNA Micelleplexes Coated with Apolipoprotein E3 for Blood-Brain Barrier Penetrating Gene Delivery.
Wilson Wee Mia Soh, Jingling Zhu, Zhongxing Zhang, Muhammad Danial Mohd Mazlan, Eunice W M Chin, Chee Hoe Cheah, Eyleen L K Goh, Jun Li
{"title":"Supramolecular Polycations with a Linear-Star Architecture Containing Hydrophobic Poly[(<i>R</i>,<i>S</i>)-3-hydroxybutyrate]: Formation of DNA Micelleplexes Coated with Apolipoprotein E3 for Blood-Brain Barrier Penetrating Gene Delivery.","authors":"Wilson Wee Mia Soh, Jingling Zhu, Zhongxing Zhang, Muhammad Danial Mohd Mazlan, Eunice W M Chin, Chee Hoe Cheah, Eyleen L K Goh, Jun Li","doi":"10.1021/acs.biomac.4c01412","DOIUrl":null,"url":null,"abstract":"<p><p>A novel blood-brain barrier (BBB)-penetrating supramolecular gene delivery system was developed utilizing a host-guest block-building strategy to systematically screen and optimize various block compositions. Linear poly(ethylene glycol) (PEG) was coupled with hydrophobic poly[(<i>R</i>,<i>S</i>)-β-hydroxybutyrate] (PHB) blocks of varying lengths with an adamantyl (Ad) end, giving the PEG-PHB-Ad guest polymers, which were complexed with the cationic 4-arm star-shaped β-cyclodextrin-poly(2-dimethylaminoethyl methacrylate) (βCD-pDMAEMA) host polymer, resulting in the formation of linear-star pseudoblock PEG-PHB-Ad/βCD-pDMAEMA copolymers. These amphiphilic supramolecular copolymers were thoroughly characterized and assessed for the formation of DNA micelleplex nanoparticles as a gene delivery system. Through a rational selection process, an optimal host-guest configuration was identified, considering critical factors such as cytotoxicity, gene transfection efficiency, serum stability, cellular uptake, and hemolytic activity. The optimized host-guest copolymer was subsequently coated with the targeting protein apolipoprotein E3 (ApoE3), endowing it with BBB-penetrating capabilities, which was validated through an <i>in vitro</i> BBB transwell model.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01412","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A novel blood-brain barrier (BBB)-penetrating supramolecular gene delivery system was developed utilizing a host-guest block-building strategy to systematically screen and optimize various block compositions. Linear poly(ethylene glycol) (PEG) was coupled with hydrophobic poly[(R,S)-β-hydroxybutyrate] (PHB) blocks of varying lengths with an adamantyl (Ad) end, giving the PEG-PHB-Ad guest polymers, which were complexed with the cationic 4-arm star-shaped β-cyclodextrin-poly(2-dimethylaminoethyl methacrylate) (βCD-pDMAEMA) host polymer, resulting in the formation of linear-star pseudoblock PEG-PHB-Ad/βCD-pDMAEMA copolymers. These amphiphilic supramolecular copolymers were thoroughly characterized and assessed for the formation of DNA micelleplex nanoparticles as a gene delivery system. Through a rational selection process, an optimal host-guest configuration was identified, considering critical factors such as cytotoxicity, gene transfection efficiency, serum stability, cellular uptake, and hemolytic activity. The optimized host-guest copolymer was subsequently coated with the targeting protein apolipoprotein E3 (ApoE3), endowing it with BBB-penetrating capabilities, which was validated through an in vitro BBB transwell model.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.