Salt-Compact Albumin as a New Pure Protein-based Biomaterials: From Design to In Vivo Studies

IF 9.6 2区 医学 Q1 ENGINEERING, BIOMEDICAL Advanced Healthcare Materials Pub Date : 2025-01-23 DOI:10.1002/adhm.202403385
Eya Aloui, Jordan Beurton, Claire Medemblik, Ludivine Hugoni, Igor Clarot, Ariane Boudier, Youri Arntz, Marcella De Giorgi, Jérôme Combet, Guillaume Fleith, Eric Mathieu, Naji Kharouf, Leyla Kocgozlu, Benoît Heinrich, Damien Favier, Michael Brender, Fouzia Boulmedais, Pierre Schaaf, Benoît Frisch, Philippe Lavalle
{"title":"Salt-Compact Albumin as a New Pure Protein-based Biomaterials: From Design to In Vivo Studies","authors":"Eya Aloui,&nbsp;Jordan Beurton,&nbsp;Claire Medemblik,&nbsp;Ludivine Hugoni,&nbsp;Igor Clarot,&nbsp;Ariane Boudier,&nbsp;Youri Arntz,&nbsp;Marcella De Giorgi,&nbsp;Jérôme Combet,&nbsp;Guillaume Fleith,&nbsp;Eric Mathieu,&nbsp;Naji Kharouf,&nbsp;Leyla Kocgozlu,&nbsp;Benoît Heinrich,&nbsp;Damien Favier,&nbsp;Michael Brender,&nbsp;Fouzia Boulmedais,&nbsp;Pierre Schaaf,&nbsp;Benoît Frisch,&nbsp;Philippe Lavalle","doi":"10.1002/adhm.202403385","DOIUrl":null,"url":null,"abstract":"<p>Current biodegradable materials are facing many challenges when used for the design of implantable devices because of shortcomings such as toxicity of crosslinking agents and degradation derivatives, limited cell adhesion, and limited immunological compatibility. Here, a class of materials built entirely of stable protein is designed using a simple protocol based on salt-assisted compaction of albumin, breaking with current crosslinking strategies. Salt-assisted compaction is based on the assembly of albumin in the presence of high concentrations of specific salts such as sodium bromide. This process leads, surprisingly, to water-insoluble handable materials with high preservation of their native protein structures and Young's modulus close to that of cartilage (0.86 MPa). Furthermore, these materials are non-cytotoxic, non-inflammatory, and in vivo implantations (using models of mice and rabbits) demonstrate a very slow degradation rate of the material with excellent biocompatibility and absence of systemic inflammation and implant failure. Therefore, these materials constitute promising candidates for the design of biodegradable scaffolds and drug delivery systems as an alternative to conventional synthetic degradable polyester materials.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":"14 7","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adhm.202403385","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adhm.202403385","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Current biodegradable materials are facing many challenges when used for the design of implantable devices because of shortcomings such as toxicity of crosslinking agents and degradation derivatives, limited cell adhesion, and limited immunological compatibility. Here, a class of materials built entirely of stable protein is designed using a simple protocol based on salt-assisted compaction of albumin, breaking with current crosslinking strategies. Salt-assisted compaction is based on the assembly of albumin in the presence of high concentrations of specific salts such as sodium bromide. This process leads, surprisingly, to water-insoluble handable materials with high preservation of their native protein structures and Young's modulus close to that of cartilage (0.86 MPa). Furthermore, these materials are non-cytotoxic, non-inflammatory, and in vivo implantations (using models of mice and rabbits) demonstrate a very slow degradation rate of the material with excellent biocompatibility and absence of systemic inflammation and implant failure. Therefore, these materials constitute promising candidates for the design of biodegradable scaffolds and drug delivery systems as an alternative to conventional synthetic degradable polyester materials.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
盐致密白蛋白作为一种新的纯蛋白基生物材料:从设计到体内研究。
目前的生物可降解材料由于交联剂和降解衍生物的毒性、细胞粘附性和免疫相容性有限等缺点,在用于植入式装置设计时面临着许多挑战。在这里,一类完全由稳定蛋白构建的材料被设计成基于盐辅助白蛋白压实的简单方案,打破了当前的交联策略。盐辅助压实是基于白蛋白在高浓度特定盐(如溴化钠)存在下的组装。令人惊讶的是,这一过程导致了不溶于水的可处理材料,这些材料具有高度保存其天然蛋白质结构和接近软骨的杨氏模量(0.86 MPa)。此外,这些材料无细胞毒性,无炎症,并且在体内植入(使用小鼠和兔子模型)表明材料的降解速度非常慢,具有良好的生物相容性,没有全身炎症和植入失败。因此,作为传统合成可降解聚酯材料的替代品,这些材料构成了生物可降解支架和药物输送系统设计的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
期刊最新文献
Cu-Single Atoms/Clusters-Nanoenzymes Trigger and Integrate Tandem Effect to Synchronously Boost Antifungal and Anti-Inflammation for Fungal Keratitis. Inhaled Micelle of Antimicrobial Protein-Polymer Conjugate with Less Positive Charge Leads to Better Mucus Penetration and Enhanced Gram-Negative Pneumonia Therapy. An Ingenious Peroxynitrite Generator Specifically Reversing "Cold" Tumors via Pyroptosis and STING Pathways. Dual-Functional Polyphosphoesters for Gene Delivery: Synergistic Effects of Guanidinium and Hydrophobic Side Chains in Degradable Polymers. Ultrasound-Triggered Gelation for Restoring Biomechanical Properties of Degenerated Functional Spinal Units.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1