{"title":"Functional polysaccharide-based hydrogel in bone regeneration: From fundamentals to advanced applications.","authors":"Jian Du, Tian Zhou, Wei Peng","doi":"10.1016/j.carbpol.2024.123138","DOIUrl":null,"url":null,"abstract":"<p><p>Bone regeneration is limited and generally requires external intervention to promote effective repair. Autografts, allografts, and xenografts as traditional methods for addressing bone defects have been widely utilized, their clinical applicability is limited due to their respective disadvantages. Fortunately, functional polysaccharide hydrogels have gained significant attention in bone regeneration due to their exceptional drug-loading capacity, biocompatibility, and ease of chemical modification. They also provide an optimal microenvironment for bone repair and regeneration. This review provides an overview of various functional polysaccharide hydrogels derived from biocompatible materials, focusing on their applications in intelligent delivery systems, bone tissue regeneration, and cartilage defect repair. Particularly, the incorporation of bioactive molecules into the design of functional polysaccharide hydrogels has been shown to significantly enhance bone regeneration. Additionally, this review emphasizes the preparation methods for functional polysaccharide hydrogels and associated the bone healing mechanisms. Finally, the limitations and future prospects of functional polysaccharide hydrogels are thoroughly evaluated.</p>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"352 ","pages":"123138"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.carbpol.2024.123138","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Bone regeneration is limited and generally requires external intervention to promote effective repair. Autografts, allografts, and xenografts as traditional methods for addressing bone defects have been widely utilized, their clinical applicability is limited due to their respective disadvantages. Fortunately, functional polysaccharide hydrogels have gained significant attention in bone regeneration due to their exceptional drug-loading capacity, biocompatibility, and ease of chemical modification. They also provide an optimal microenvironment for bone repair and regeneration. This review provides an overview of various functional polysaccharide hydrogels derived from biocompatible materials, focusing on their applications in intelligent delivery systems, bone tissue regeneration, and cartilage defect repair. Particularly, the incorporation of bioactive molecules into the design of functional polysaccharide hydrogels has been shown to significantly enhance bone regeneration. Additionally, this review emphasizes the preparation methods for functional polysaccharide hydrogels and associated the bone healing mechanisms. Finally, the limitations and future prospects of functional polysaccharide hydrogels are thoroughly evaluated.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.