Wenliang Zhang, Timing Fang, Wensheng Lei, Yuxin Feng, Xiao Tang, Zhezheng Ding, Xiaomin Liu, Pengfei Qi, Yan Wang
{"title":"A mechanically robust chitosan-based macroporous foam for sustainable Se(IV) elimination from wastewater.","authors":"Wenliang Zhang, Timing Fang, Wensheng Lei, Yuxin Feng, Xiao Tang, Zhezheng Ding, Xiaomin Liu, Pengfei Qi, Yan Wang","doi":"10.1016/j.carbpol.2025.123238","DOIUrl":null,"url":null,"abstract":"<p><p>The contamination of water resources by selenium (Se), particularly in the highly toxic Se(IV) oxidation state, poses a significant environmental and public health concern due to its detrimental impacts on humans and aquatic ecosystems. In this work, we report a novel composite foam (CFC) by incorporating chitosan (CS), cellulose nanofibers (CNF) and iron oxyhydroxide (FeOOH) nanoparticles through a one-pot fabrication process. The CFC foam features a three-dimensional porous structure, conferring both exceptional mechanical strength and superior adsorption performance for Se(IV), with a maximum equilibrium adsorption capacity of 90 mg/g achieved within 3 h. It maintained stable removal efficiency across a wide pH range and demonstrated strong resistance to interference from common anions and ionic strength variations. The primary adsorption mechanism involves electrostatic interactions and complexation between Se(IV) and functional groups presented in the CFC foam. Molecular dynamics simulations further confirmed the stability and effectiveness of Se(IV) adsorption at the molecular level. Additionally, CFC foam exhibited satisfactory practical applicability and durability, maintaining high Se(IV) removal performance over sequential adsorption processes. This study highlights the potential of CFC foam as an effective and sustainable material for Se(IV) remediation in wastewater, offering a promising solution for mitigating Se pollution and improving water quality.</p>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"352 ","pages":"123238"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.carbpol.2025.123238","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The contamination of water resources by selenium (Se), particularly in the highly toxic Se(IV) oxidation state, poses a significant environmental and public health concern due to its detrimental impacts on humans and aquatic ecosystems. In this work, we report a novel composite foam (CFC) by incorporating chitosan (CS), cellulose nanofibers (CNF) and iron oxyhydroxide (FeOOH) nanoparticles through a one-pot fabrication process. The CFC foam features a three-dimensional porous structure, conferring both exceptional mechanical strength and superior adsorption performance for Se(IV), with a maximum equilibrium adsorption capacity of 90 mg/g achieved within 3 h. It maintained stable removal efficiency across a wide pH range and demonstrated strong resistance to interference from common anions and ionic strength variations. The primary adsorption mechanism involves electrostatic interactions and complexation between Se(IV) and functional groups presented in the CFC foam. Molecular dynamics simulations further confirmed the stability and effectiveness of Se(IV) adsorption at the molecular level. Additionally, CFC foam exhibited satisfactory practical applicability and durability, maintaining high Se(IV) removal performance over sequential adsorption processes. This study highlights the potential of CFC foam as an effective and sustainable material for Se(IV) remediation in wastewater, offering a promising solution for mitigating Se pollution and improving water quality.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.