{"title":"Photodynamic therapy combined with quaternized chitosan antibacterial strategy for instant and prolonged bacterial infection treatment.","authors":"Haihua Luo, Huan Xu, Hongli Zhang, Xiangming Li, Qiong Wu, Tian Gao","doi":"10.1016/j.carbpol.2024.123147","DOIUrl":null,"url":null,"abstract":"<p><p>Drug-resistant bacterial infections represent a critical global public health challenge, driven largely by the misuse and overuse of antibiotics. Tackling the growing threat of bacterial resistance necessitates the development of innovative antibacterial agents that function independently of traditional antibiotics. In this study, novel antibacterial nano-micelles were rationally designed by conjugating quaternized chitosan with the photosensitizer chlorin e6. These nano-micelles promoted the solubility and stability of chlorin e6 while maintaining robust singlet oxygen generation under 660 nm laser irradiation. The positively charged nano-micelles facilitated strong electrostatic interactions with bacterial surfaces, promoting efficient adhesion and enabling effective photodynamic antibacterial activity mediated by singlet oxygen. In vitro experiments revealed that the nano-micelles exhibited instant and prolonged antibacterial effects, effectively suppressing bacterial proliferation without inducing resistance and disrupting mature biofilms. Furthermore, in conjunction with laser treatment, nano-micelles exhibited remarkable in vivo antibacterial efficacy, significantly accelerating the healing of skin wounds infected with Methicillin-resistant Staphylococcus aureus while maintaining favorable biocompatibility. These findings highlight the potential of the nano-micelles as a promising non-antibiotic antibacterial formulation, offering a powerful strategy to combat drug-resistant bacterial infections and paving the way for their clinical application in infection management.</p>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"352 ","pages":"123147"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.carbpol.2024.123147","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Drug-resistant bacterial infections represent a critical global public health challenge, driven largely by the misuse and overuse of antibiotics. Tackling the growing threat of bacterial resistance necessitates the development of innovative antibacterial agents that function independently of traditional antibiotics. In this study, novel antibacterial nano-micelles were rationally designed by conjugating quaternized chitosan with the photosensitizer chlorin e6. These nano-micelles promoted the solubility and stability of chlorin e6 while maintaining robust singlet oxygen generation under 660 nm laser irradiation. The positively charged nano-micelles facilitated strong electrostatic interactions with bacterial surfaces, promoting efficient adhesion and enabling effective photodynamic antibacterial activity mediated by singlet oxygen. In vitro experiments revealed that the nano-micelles exhibited instant and prolonged antibacterial effects, effectively suppressing bacterial proliferation without inducing resistance and disrupting mature biofilms. Furthermore, in conjunction with laser treatment, nano-micelles exhibited remarkable in vivo antibacterial efficacy, significantly accelerating the healing of skin wounds infected with Methicillin-resistant Staphylococcus aureus while maintaining favorable biocompatibility. These findings highlight the potential of the nano-micelles as a promising non-antibiotic antibacterial formulation, offering a powerful strategy to combat drug-resistant bacterial infections and paving the way for their clinical application in infection management.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.