Tendon-mimicking anisotropic alginate-based double-network composite hydrogels with enhanced mechanical properties and high impact absorption.

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED Carbohydrate Polymers Pub Date : 2025-03-15 Epub Date: 2024-12-26 DOI:10.1016/j.carbpol.2024.123193
Suji Choi, Ziwen Fan, Jihye Im, Thanh Loc Nguyen, Nuri Park, Youngjin Choi, Jun Yup Lee, Jaeyun Kim
{"title":"Tendon-mimicking anisotropic alginate-based double-network composite hydrogels with enhanced mechanical properties and high impact absorption.","authors":"Suji Choi, Ziwen Fan, Jihye Im, Thanh Loc Nguyen, Nuri Park, Youngjin Choi, Jun Yup Lee, Jaeyun Kim","doi":"10.1016/j.carbpol.2024.123193","DOIUrl":null,"url":null,"abstract":"<p><p>Tendons are anisotropic tissues with exceptional mechanical properties, which result from their unique anisotropic structure and mechanical behavior under stress. While research has focused on replicating anisotropic structures and mechanical properties of tendons, fewer studies have examined their specific mechanical behaviors. Here, we present a simple method for creating calcium-crosslinked alginate-based double-network hydrogels that mimics tendons by exhibiting anisotropic structure, high mechanical strength and toughness, and a distinctive \"toe region\" when stretched. The tendon-mimicking hydrogel was fabricated using alginate/polyacrylamide double-network embedded with various mesoporous silica particles, followed by pre-stretching and fixation. Our findings show that hydrogels embedded with high aspect-ratio rod-shaped mesoporous silica microparticles and subjected to multiple pre-stretching cycles in the elastic range, exhibited the most favorable mechanical properties, including a toe region, closely resembling natural tendons. The hydrogels exhibited elastic modulus of 13.3 MPa, tensile strength of 5 MPa, and toughness of 3.5 MJ m<sup>-3</sup>, even in its swollen state. An impact absorption test demonstrated the hydrogel's high energy dissipation and damping capacity, effectively absorbing external forces and functioning similarly to tendons. These anisotropic composite hydrogels, with their superior mechanical properties, offer considerable potential for applications in artificial tissue engineering, particularly where tendon-like mechanical characteristics are needed.</p>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"352 ","pages":"123193"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.carbpol.2024.123193","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Tendons are anisotropic tissues with exceptional mechanical properties, which result from their unique anisotropic structure and mechanical behavior under stress. While research has focused on replicating anisotropic structures and mechanical properties of tendons, fewer studies have examined their specific mechanical behaviors. Here, we present a simple method for creating calcium-crosslinked alginate-based double-network hydrogels that mimics tendons by exhibiting anisotropic structure, high mechanical strength and toughness, and a distinctive "toe region" when stretched. The tendon-mimicking hydrogel was fabricated using alginate/polyacrylamide double-network embedded with various mesoporous silica particles, followed by pre-stretching and fixation. Our findings show that hydrogels embedded with high aspect-ratio rod-shaped mesoporous silica microparticles and subjected to multiple pre-stretching cycles in the elastic range, exhibited the most favorable mechanical properties, including a toe region, closely resembling natural tendons. The hydrogels exhibited elastic modulus of 13.3 MPa, tensile strength of 5 MPa, and toughness of 3.5 MJ m-3, even in its swollen state. An impact absorption test demonstrated the hydrogel's high energy dissipation and damping capacity, effectively absorbing external forces and functioning similarly to tendons. These anisotropic composite hydrogels, with their superior mechanical properties, offer considerable potential for applications in artificial tissue engineering, particularly where tendon-like mechanical characteristics are needed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
期刊最新文献
Durable PVA-based hydrogel sponge with cellulose whiskers embedded in the 3D interconnected channels for efficient oil/water separation. Efficient and green extraction of chitin from Hermetia illucens using deep eutectic solvents and its application for rapid hemostasis. Engineered extracellular vesicles loaded in boronated cyclodextrin framework for pulmonary delivery. Dynamic mechanical analysis of alginate/gellan hydrogels under controlled conditions relevant to environmentally sensitive applications. Gallic acid-grafted chitosan photothermal hydrogels functionalized with mineralized copper-sericin nanoparticles for MRSA-infected wound management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1