Laboratory evolution in Novosphingobium aromaticivorans enables rapid catabolism of a model lignin-derived aromatic dimer.

IF 3.9 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Applied and Environmental Microbiology Pub Date : 2025-01-23 DOI:10.1128/aem.02081-24
Marco N Allemann, Ryo Kato, Dana L Carper, Leah H Hochanadel, William G Alexander, Richard J Giannone, Naofumi Kamimura, Eiji Masai, Joshua K Michener
{"title":"Laboratory evolution in <i>Novosphingobium aromaticivorans</i> enables rapid catabolism of a model lignin-derived aromatic dimer.","authors":"Marco N Allemann, Ryo Kato, Dana L Carper, Leah H Hochanadel, William G Alexander, Richard J Giannone, Naofumi Kamimura, Eiji Masai, Joshua K Michener","doi":"10.1128/aem.02081-24","DOIUrl":null,"url":null,"abstract":"<p><p>Lignin contains a variety of interunit linkages, leading to a range of potential decomposition products that can be used as carbon and energy sources by microbes. β-O-4 linkages are the most common in native lignin, and associated catabolic pathways have been well characterized. However, the fate of the mono-aromatic intermediates that result from β-O-4 dimer cleavage has not been fully elucidated. Here, we used experimental evolution to identify mutant strains of <i>Novosphingobium aromaticivorans</i> with improved catabolism of a model aromatic dimer containing a β-O-4 linkage, guaiacylglycerol-β-guaiacyl ether (GGE). We identified several parallel causal mutations, including a single nucleotide polymorphism in the promoter of an uncharacterized gene that roughly doubled the growth yield with GGE. We characterized the associated enzyme and demonstrated that it oxidizes an intermediate in GGE catabolism, β-hydroxypropiovanillone, to vanilloyl acetaldehyde. Identification of this enzyme and its key role in GGE catabolism furthers our understanding of catabolic pathways for lignin-derived aromatic compounds.IMPORTANCELignin degradation is a key step for both carbon cycling in nature and biomass conversion to fuels and chemicals. Bacteria can catabolize lignin-derived aromatic compounds, but the complexity of lignin means that full mineralization requires numerous catabolic pathways and often results in slow growth. Using experimental evolution, we identified an uncharacterized enzyme for the catabolism of a lignin-derived aromatic monomer, β-hydroxypropiovanillone. A single nucleotide polymorphism in the promoter of the associated gene significantly increased bacterial growth with either β-hydroxypropiovanillone or a related lignin-derived aromatic dimer. This work expands the repertoire of known aromatic catabolic genes and demonstrates that slow catabolism of lignin-derived aromatic compounds may be due to misregulation under laboratory conditions rather than inherent catabolic challenges.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0208124"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/aem.02081-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lignin contains a variety of interunit linkages, leading to a range of potential decomposition products that can be used as carbon and energy sources by microbes. β-O-4 linkages are the most common in native lignin, and associated catabolic pathways have been well characterized. However, the fate of the mono-aromatic intermediates that result from β-O-4 dimer cleavage has not been fully elucidated. Here, we used experimental evolution to identify mutant strains of Novosphingobium aromaticivorans with improved catabolism of a model aromatic dimer containing a β-O-4 linkage, guaiacylglycerol-β-guaiacyl ether (GGE). We identified several parallel causal mutations, including a single nucleotide polymorphism in the promoter of an uncharacterized gene that roughly doubled the growth yield with GGE. We characterized the associated enzyme and demonstrated that it oxidizes an intermediate in GGE catabolism, β-hydroxypropiovanillone, to vanilloyl acetaldehyde. Identification of this enzyme and its key role in GGE catabolism furthers our understanding of catabolic pathways for lignin-derived aromatic compounds.IMPORTANCELignin degradation is a key step for both carbon cycling in nature and biomass conversion to fuels and chemicals. Bacteria can catabolize lignin-derived aromatic compounds, but the complexity of lignin means that full mineralization requires numerous catabolic pathways and often results in slow growth. Using experimental evolution, we identified an uncharacterized enzyme for the catabolism of a lignin-derived aromatic monomer, β-hydroxypropiovanillone. A single nucleotide polymorphism in the promoter of the associated gene significantly increased bacterial growth with either β-hydroxypropiovanillone or a related lignin-derived aromatic dimer. This work expands the repertoire of known aromatic catabolic genes and demonstrates that slow catabolism of lignin-derived aromatic compounds may be due to misregulation under laboratory conditions rather than inherent catabolic challenges.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied and Environmental Microbiology
Applied and Environmental Microbiology 生物-生物工程与应用微生物
CiteScore
7.70
自引率
2.30%
发文量
730
审稿时长
1.9 months
期刊介绍: Applied and Environmental Microbiology (AEM) publishes papers that make significant contributions to (a) applied microbiology, including biotechnology, protein engineering, bioremediation, and food microbiology, (b) microbial ecology, including environmental, organismic, and genomic microbiology, and (c) interdisciplinary microbiology, including invertebrate microbiology, plant microbiology, aquatic microbiology, and geomicrobiology.
期刊最新文献
Global Gac/Rsm regulatory system activates the biosynthesis of mupirocin by controlling the MupR/I quorum sensing system in Pseudomonas sp. NCIMB 10586. Laboratory evolution in Novosphingobium aromaticivorans enables rapid catabolism of a model lignin-derived aromatic dimer. Physico-chemical properties and substrate specificity of α-(1→3)-d-glucan degrading recombinant mutanase from Trichoderma harzianum expressed in Penicillium verruculosum. Comparative metagenomics of tropical reef fishes show conserved core gut functions across hosts and diets with diet-related functional gene enrichments. Development of the Incompatible Insect Technique targeting Aedes albopictus: introgression of a wild nuclear background restores the performance of males artificially infected with Wolbachia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1