Kevin P Hickey, Margaret M MacDonell, Kurt C Picel
{"title":"Quantum chemically calculated abraham parameters for quantifying and predicting polymer hydrophobicity.","authors":"Kevin P Hickey, Margaret M MacDonell, Kurt C Picel","doi":"10.1093/etojnl/vgae062","DOIUrl":null,"url":null,"abstract":"<p><p>The leakage and accumulation of plastic in the environment is a significant and growing problem with numerous detrimental impacts and has led to a push toward the design and development of more environmentally benign materials. To this end we have developed a quantum chemistry (QC) based model for predicting the mobility of polymer materials from molecular structure. Hydrophobicity is used as a surrogate for mobility given that hydrophobic interactions drive much of the partitioning of contaminants in and out of various environmentally relevant compartments. To model polymer hydrophobicity we adjusted a previously developed Quantum Chemically Calculated Abraham Parameter (QCAP) model to calculate Abraham Parameters (AP) of small molecules from molecular structure information. The resulting model predicted the octanol-water partition coefficient (KOW) of polymer repeating units with a root mean square error (RMSE) of 0.48 (log scale). Additionally, the hydrophobicity of high molecular weight polymer materials was captured though solubility parameters and nile red staining experiments from the literature and predicted with RMSEs of 1.21 (J/cc)0.5 and 3.42 nm respectively. Finally, to test the environmental applicability of the model the relative adsorption capacity of three polymers were predicted and used to unify sorption isotherms across multiple sorbates and polymer sorbents.</p>","PeriodicalId":11793,"journal":{"name":"Environmental Toxicology and Chemistry","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Toxicology and Chemistry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/etojnl/vgae062","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The leakage and accumulation of plastic in the environment is a significant and growing problem with numerous detrimental impacts and has led to a push toward the design and development of more environmentally benign materials. To this end we have developed a quantum chemistry (QC) based model for predicting the mobility of polymer materials from molecular structure. Hydrophobicity is used as a surrogate for mobility given that hydrophobic interactions drive much of the partitioning of contaminants in and out of various environmentally relevant compartments. To model polymer hydrophobicity we adjusted a previously developed Quantum Chemically Calculated Abraham Parameter (QCAP) model to calculate Abraham Parameters (AP) of small molecules from molecular structure information. The resulting model predicted the octanol-water partition coefficient (KOW) of polymer repeating units with a root mean square error (RMSE) of 0.48 (log scale). Additionally, the hydrophobicity of high molecular weight polymer materials was captured though solubility parameters and nile red staining experiments from the literature and predicted with RMSEs of 1.21 (J/cc)0.5 and 3.42 nm respectively. Finally, to test the environmental applicability of the model the relative adsorption capacity of three polymers were predicted and used to unify sorption isotherms across multiple sorbates and polymer sorbents.
期刊介绍:
The Society of Environmental Toxicology and Chemistry (SETAC) publishes two journals: Environmental Toxicology and Chemistry (ET&C) and Integrated Environmental Assessment and Management (IEAM). Environmental Toxicology and Chemistry is dedicated to furthering scientific knowledge and disseminating information on environmental toxicology and chemistry, including the application of these sciences to risk assessment.[...]
Environmental Toxicology and Chemistry is interdisciplinary in scope and integrates the fields of environmental toxicology; environmental, analytical, and molecular chemistry; ecology; physiology; biochemistry; microbiology; genetics; genomics; environmental engineering; chemical, environmental, and biological modeling; epidemiology; and earth sciences. ET&C seeks to publish papers describing original experimental or theoretical work that significantly advances understanding in the area of environmental toxicology, environmental chemistry and hazard/risk assessment. Emphasis is given to papers that enhance capabilities for the prediction, measurement, and assessment of the fate and effects of chemicals in the environment, rather than simply providing additional data. The scientific impact of papers is judged in terms of the breadth and depth of the findings and the expected influence on existing or future scientific practice. Methodological papers must make clear not only how the work differs from existing practice, but the significance of these differences to the field. Site-based research or monitoring must have regional or global implications beyond the particular site, such as evaluating processes, mechanisms, or theory under a natural environmental setting.