Quantum chemically calculated abraham parameters for quantifying and predicting polymer hydrophobicity.

IF 3.6 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Environmental Toxicology and Chemistry Pub Date : 2025-01-22 DOI:10.1093/etojnl/vgae062
Kevin P Hickey, Margaret M MacDonell, Kurt C Picel
{"title":"Quantum chemically calculated abraham parameters for quantifying and predicting polymer hydrophobicity.","authors":"Kevin P Hickey, Margaret M MacDonell, Kurt C Picel","doi":"10.1093/etojnl/vgae062","DOIUrl":null,"url":null,"abstract":"<p><p>The leakage and accumulation of plastic in the environment is a significant and growing problem with numerous detrimental impacts and has led to a push toward the design and development of more environmentally benign materials. To this end we have developed a quantum chemistry (QC) based model for predicting the mobility of polymer materials from molecular structure. Hydrophobicity is used as a surrogate for mobility given that hydrophobic interactions drive much of the partitioning of contaminants in and out of various environmentally relevant compartments. To model polymer hydrophobicity we adjusted a previously developed Quantum Chemically Calculated Abraham Parameter (QCAP) model to calculate Abraham Parameters (AP) of small molecules from molecular structure information. The resulting model predicted the octanol-water partition coefficient (KOW) of polymer repeating units with a root mean square error (RMSE) of 0.48 (log scale). Additionally, the hydrophobicity of high molecular weight polymer materials was captured though solubility parameters and nile red staining experiments from the literature and predicted with RMSEs of 1.21 (J/cc)0.5 and 3.42 nm respectively. Finally, to test the environmental applicability of the model the relative adsorption capacity of three polymers were predicted and used to unify sorption isotherms across multiple sorbates and polymer sorbents.</p>","PeriodicalId":11793,"journal":{"name":"Environmental Toxicology and Chemistry","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Toxicology and Chemistry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/etojnl/vgae062","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The leakage and accumulation of plastic in the environment is a significant and growing problem with numerous detrimental impacts and has led to a push toward the design and development of more environmentally benign materials. To this end we have developed a quantum chemistry (QC) based model for predicting the mobility of polymer materials from molecular structure. Hydrophobicity is used as a surrogate for mobility given that hydrophobic interactions drive much of the partitioning of contaminants in and out of various environmentally relevant compartments. To model polymer hydrophobicity we adjusted a previously developed Quantum Chemically Calculated Abraham Parameter (QCAP) model to calculate Abraham Parameters (AP) of small molecules from molecular structure information. The resulting model predicted the octanol-water partition coefficient (KOW) of polymer repeating units with a root mean square error (RMSE) of 0.48 (log scale). Additionally, the hydrophobicity of high molecular weight polymer materials was captured though solubility parameters and nile red staining experiments from the literature and predicted with RMSEs of 1.21 (J/cc)0.5 and 3.42 nm respectively. Finally, to test the environmental applicability of the model the relative adsorption capacity of three polymers were predicted and used to unify sorption isotherms across multiple sorbates and polymer sorbents.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.40
自引率
9.80%
发文量
265
审稿时长
3.4 months
期刊介绍: The Society of Environmental Toxicology and Chemistry (SETAC) publishes two journals: Environmental Toxicology and Chemistry (ET&C) and Integrated Environmental Assessment and Management (IEAM). Environmental Toxicology and Chemistry is dedicated to furthering scientific knowledge and disseminating information on environmental toxicology and chemistry, including the application of these sciences to risk assessment.[...] Environmental Toxicology and Chemistry is interdisciplinary in scope and integrates the fields of environmental toxicology; environmental, analytical, and molecular chemistry; ecology; physiology; biochemistry; microbiology; genetics; genomics; environmental engineering; chemical, environmental, and biological modeling; epidemiology; and earth sciences. ET&C seeks to publish papers describing original experimental or theoretical work that significantly advances understanding in the area of environmental toxicology, environmental chemistry and hazard/risk assessment. Emphasis is given to papers that enhance capabilities for the prediction, measurement, and assessment of the fate and effects of chemicals in the environment, rather than simply providing additional data. The scientific impact of papers is judged in terms of the breadth and depth of the findings and the expected influence on existing or future scientific practice. Methodological papers must make clear not only how the work differs from existing practice, but the significance of these differences to the field. Site-based research or monitoring must have regional or global implications beyond the particular site, such as evaluating processes, mechanisms, or theory under a natural environmental setting.
期刊最新文献
Depletion of fenbendazole sulfone residues in Northern Bobwhite (Colinus virginianus) liver following medicated feed treatment. Influences of gonad developmental stage on ovary selenium concentrations in fish-implications for ovary selenium monitoring. Atmospheric pah concentrations in a semi-urban site: temporal variation, risk assessment, source identification and estimation of levels in diverse environments. Quantum chemically calculated abraham parameters for quantifying and predicting polymer hydrophobicity. The pollution fast-track to the arctic: how Southern wintering areas contribute to organochlorine loads in a migrant seabird breeding in the arctic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1